Difference between revisions of "009B Sample Midterm 3, Problem 4"
| Line 60: | Line 60: | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
| − | \displaystyle{\int_1^62t^2e^{-t}~dt} & = & \displaystyle{\left. -2t^2e^{-t}-4te^{-t}\right|_1^6+\int_1^6 4e^{-t}}\\ | + | \displaystyle{\int_1^62t^2e^{-t}~dt} & = & \displaystyle{\left. (-2t^2e^{-t}-4te^{-t})\right|_1^6+\int_1^6 4e^{-t}}\\ |
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\left. -2t^2e^{-t}-4te^{-t}-4e^{-t}\right|_1^6}\\ | + | & = & \displaystyle{\left. (-2t^2e^{-t}-4te^{-t}-4e^{-t})\right|_1^6}\\ |
&&\\ | &&\\ | ||
| − | & = & \displaystyle{-2(6)^2e^{-6}-4(6)e^{-6}-4e^{-6} | + | & = & \displaystyle{(-2(6)^2e^{-6}-4(6)e^{-6}-4e^{-6})-(-2(1)^2e^{-1}-4(1)e^{-1}-4e^{-1})} \\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\frac{-100+10e^5}{e^6}.} | & = & \displaystyle{\frac{-100+10e^5}{e^6}.} | ||
Revision as of 19:02, 13 April 2017
The rate of reaction to a drug is given by:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r'(t)=2t^2e^{-t}}
where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} is the number of hours since the drug was administered.
Find the total reaction to the drug from to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=6.}
| Foundations: |
|---|
| If we calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b r'(t)~dt,} what are we calculating? |
|
We are calculating Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r(b)-r(a).} This is the total reaction to the |
|
drug from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=a} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=b.} |
Solution:
| Step 1: |
|---|
| To calculate the total reaction to the drug from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=1} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=6,} |
| we need to calculate |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^6 r'(t)~dt=\int_1^6 2t^2e^{-t}~dt.} |
| Step 2: |
|---|
| We proceed using integration by parts. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=2t^2} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{-t}dt.} |
| Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=4t~dt} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=-e^{-t}.} |
| Then, we have |
| Step 3: |
|---|
| Now, we need to use integration by parts again. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=4t} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{-t}dt.} |
| Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=4dt} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=-e^{-t}.} |
| Thus, we get |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_1^62t^2e^{-t}~dt} & = & \displaystyle{\left. (-2t^2e^{-t}-4te^{-t})\right|_1^6+\int_1^6 4e^{-t}}\\ &&\\ & = & \displaystyle{\left. (-2t^2e^{-t}-4te^{-t}-4e^{-t})\right|_1^6}\\ &&\\ & = & \displaystyle{(-2(6)^2e^{-6}-4(6)e^{-6}-4e^{-6})-(-2(1)^2e^{-1}-4(1)e^{-1}-4e^{-1})} \\ &&\\ & = & \displaystyle{\frac{-100+10e^5}{e^6}.} \end{array}} |
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-100+10e^5}{e^6}} |