Difference between revisions of "009B Sample Midterm 3, Problem 2"

From Math Wiki
Jump to navigation Jump to search
 
Line 3: Line 3:
 
::<math>F(x)=\int_{\cos (x)}^5 \frac{1}{1+u^{10}}~du.</math>
 
::<math>F(x)=\int_{\cos (x)}^5 \frac{1}{1+u^{10}}~du.</math>
  
 +
<hr>
 +
[[009B Sample Midterm 3, Problem 2 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|What does Part 1 of the Fundamental Theorem of Calculus
 
|-
 
|say is the derivative of &nbsp;<math style="vertical-align: -16px">G(x)=\int_x^5 \frac{1}{1+u^{10}}~du?</math>
 
|-
 
|
 
&nbsp;&nbsp;&nbsp;&nbsp; First, we need to switch the bounds of integration.
 
|-
 
|
 
&nbsp;&nbsp;&nbsp;&nbsp; So, we have &nbsp;<math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math>
 
|-
 
|
 
&nbsp;&nbsp;&nbsp;&nbsp; By Part 1 of the Fundamental Theorem of Calculus, &nbsp;<math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math>
 
|}
 
  
 +
[[009B Sample Midterm 3, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|
 
Let &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; be continuous on &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and let &nbsp;<math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
 
|-
 
|
 
Then, &nbsp;<math style="vertical-align: -1px">F</math>&nbsp; is a differentiable function on &nbsp;<math style="vertical-align: -5px">(a,b)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">F'(x)=f(x).</math>
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|
 
Let &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; be continuous on &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and let &nbsp;<math style="vertical-align: -1px">F</math>&nbsp; be any antiderivative of &nbsp;<math style="vertical-align: -5px">f.</math> Then,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|First, 
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math>
 
|-
 
|Now, let &nbsp;<math style="vertical-align: -5px">g(x)=\cos(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math>
 
|-
 
|Therefore,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F(x)=-G(g(x)).</math>
 
|-
 
|Hence,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F'(x)=-G'(g(x))g'(x)</math>
 
|-
 
|by the Chain Rule.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">g'(x)=-\sin(x).</math>
 
|-
 
|By the Fundamental Theorem of Calculus,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">G'(x)=\frac{1}{1+x^{10}}.</math>
 
|-
 
|Hence,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\
 
&&\\
 
& = & \displaystyle{\frac{\sin(x)}{1+\cos^{10}x}.}\\
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; See Step 1 above
 
|-
 
|&nbsp;&nbsp; &nbsp; &nbsp; <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|}
 
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:34, 12 November 2017

State the fundamental theorem of calculus, and use this theorem to find the derivative of


Solution


Detailed Solution


Return to Sample Exam