Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Math Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
<span class="exam"> Otis Taylor plots the price per share of a stock that he owns as a function of time
+
<span class="exam">Evaluate the indefinite and definite integrals.
  
<span class="exam">and finds that it can be approximated by the function
+
<span class="exam">(a) &nbsp; <math>\int x^2\sqrt{1+x^3}~dx</math>
  
::<math>s(t)=t(25-5t)+18</math>
+
<span class="exam">(b) &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math>
 +
<hr>
 +
[[009B Sample Midterm 1, Problem 2 Solution|'''<u>Solution</u>''']]
  
<span class="exam">where &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; is the time (in years) since the stock was purchased.
 
  
<span class="exam">Find the average price of the stock over the first five years.
+
[[009B Sample Midterm 1, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|The average value of a function &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on an interval &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; is given by
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -18px">f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx.</math>
 
|}
 
 
 
'''Solution:'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|This problem wants us to find the average value of &nbsp;<math style="vertical-align: -5px">s(t)</math>&nbsp; over the interval &nbsp;<math style="vertical-align: -5px">[0,5].</math>
 
|-
 
|Using the average value formula, we have
 
|-
 
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: 0px">s_{\text{avg}}=\frac{1}{5-0} \int_0^5 t(25-5t)+18~dt.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|First, we distribute to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_{\text{avg}}=\frac{1}{5} \int_0^5 25t-5t^2+18~dt.</math>
 
|-
 
|Then, we integrate to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_{\text{avg}}=\left. \frac{1}{5}\bigg[\frac{25t^2}{2}-\frac{5t^3}{3}+18t\bigg]\right|_0^5.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|We now evaluate to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{s_{\text{avg}}} & = & \displaystyle{\frac{1}{5}\bigg[\frac{25(5)^2}{2}-\frac{5(5)^3}{3}+18(5)\bigg]-0}\\
 
&&\\
 
& = & \displaystyle{\frac{233}{6}}\\
 
&&\\
 
& \approx & \displaystyle{$38.83.}
 
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
| &nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{233}{6}\approx $38.83</math>
 
|-
 
|
 
|}
 
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:02, 12 November 2017

Evaluate the indefinite and definite integrals.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam