Difference between revisions of "009A Sample Midterm 3, Problem 5"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Find the derivatives of the following functions. Do not simplify. <span class="exam">(a)  <math style="vertical-align: -16px">f(x)=\frac{(3x-5)(-x^{-...")
 
Line 81: Line 81:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{x^{\frac{4}{5}}[(3x-5)(2x^{-3}+4)+(3)(-x^{-2}+4x)]-(3x-5)(-x^{-2}+4x)(\frac{4}{5}x^{-\frac{1}{5}})}{(x^{\frac{4}{5}})^2}</math>  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>f'(x)=\frac{x^{\frac{4}{5}}[(3x-5)(2x^{-3}+4)+(3)(-x^{-2}+4x)]-(3x-5)(-x^{-2}+4x)(\frac{4}{5}x^{-\frac{1}{5}})}{(x^{\frac{4}{5}})^2}</math>  
 
|-
 
|-
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{1}{2}x^{-\frac{1}{2}}+-\frac{1}{2}x^{-\frac{3}{2}}</math>  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>g'(x)=\frac{1}{2}x^{-\frac{1}{2}}+-\frac{1}{2}x^{-\frac{3}{2}}</math>  
 
|}
 
|}
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:49, 13 April 2017

Find the derivatives of the following functions. Do not simplify.

(a) 

(b)    for  

Foundations:  
1. Product Rule
       
2. Quotient Rule
       
3. Power Rule
       


Solution:

(a)

Step 1:  
Using the Quotient Rule, we have
       
Step 2:  
Now, we use the Product Rule to get

       

(b)

Step 1:  
First, we have
       
Step 2:  
Since    is a constant,    is also a constant.
Hence,
       
Therefore, we have
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam