|
|
| Line 51: |
Line 51: |
| | \displaystyle{1} & = & \displaystyle{\lim_{x\rightarrow 3} \frac{f(x)}{2x}}\\ | | \displaystyle{1} & = & \displaystyle{\lim_{x\rightarrow 3} \frac{f(x)}{2x}}\\ |
| | &&\\ | | &&\\ |
| − | & = & \displaystyle{\frac{\lim_{x\rightarrow 3} f(x)}{\lim_{x\rightarrow} 2x}}\\ | + | & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 3} f(x)}}{\displaystyle{\lim_{x\rightarrow 3} 2x}}}\\ |
| | &&\\ | | &&\\ |
| − | & = & \displaystyle{\frac{\lim_{x\rightarrow 3} f(x)}{6}.} | + | & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 3} f(x)}}{6}.} |
| | \end{array}</math> | | \end{array}</math> |
| | |- | | |- |
Revision as of 18:13, 13 April 2017
Find the following limits:
(a) If
find
(b) Find
(c) Evaluate
| Foundations:
|
1. If we have
|
|
| 2. Recall
|
|
Solution:
(a)
| Step 1:
|
| First, we have
|
|
| Therefore,
|
|
(b)
| Step 1:
|
| First, we write
|
|
| Step 2:
|
| Now, we have
|
|
|
(c)
| Step 1:
|
| First, we have
|
|
| Step 2:
|
| Now, we use the properties of limits to get
|
|
|
| Final Answer:
|
(a)
|
(b)
|
(c)
|
Return to Sample Exam