Difference between revisions of "009A Sample Midterm 1, Problem 4"
Jump to navigation
Jump to search
(Created page with "<span class="exam">Find the derivatives of the following functions. Do not simplify. <span class="exam">(a) <math style="vertical-align: -5px">f(x)=\sqrt{x}(x^2+2)</ma...") |
|||
Line 96: | Line 96: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' <math>\bigg(\frac{1}{2}x^{-\frac{1}{2}}\bigg)(x^2+2)+\sqrt{x}(2x)</math> | + | | '''(a)''' <math>f'(x)=\bigg(\frac{1}{2}x^{-\frac{1}{2}}\bigg)(x^2+2)+\sqrt{x}(2x)</math> |
|- | |- | ||
− | | '''(b)''' <math>\frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}</math> | + | | '''(b)''' <math>g'(x)=\frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}</math> |
|- | |- | ||
− | | '''(c)''' <math>\frac{\sqrt{x^2+1}(e^{-5x^3})(-15x^2)-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(2x)}{(\sqrt{x^2+1})^2}</math> | + | | '''(c)''' <math>h'(x)=\frac{\sqrt{x^2+1}(e^{-5x^3})(-15x^2)-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(2x)}{(\sqrt{x^2+1})^2}</math> |
|} | |} | ||
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 18:53, 13 April 2017
Find the derivatives of the following functions. Do not simplify.
(a)
(b) where
(c)
Foundations: |
---|
1. Product Rule |
2. Quotient Rule |
3. Chain Rule |
Solution:
(a)
Step 1: |
---|
Using the Product Rule, we have |
Step 2: |
---|
Now, we have |
(b)
Step 1: |
---|
Using the Quotient Rule, we have |
Step 2: |
---|
Now, we have |
(c)
Step 1: |
---|
Using the Quotient Rule, we have |
Step 2: |
---|
Now, using the Chain Rule, we have |
Final Answer: |
---|
(a) |
(b) |
(c) |