Difference between revisions of "009B Sample Midterm 3, Problem 1"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
[[File:9B_SM3_1_GP.png|right|375px]] | [[File:9B_SM3_1_GP.png|right|375px]] | ||
− | <span class="exam">Divide the interval <math style="vertical-align: -5px">[0,\pi]</math> into four subintervals of equal length <math>\frac{\pi}{4}</math> and compute the right-endpoint Riemann sum of <math style="vertical-align: -5px">y=\sin (x).</math> | + | <span class="exam">Divide the interval <math style="vertical-align: -5px">[0,\pi]</math> into four subintervals of equal length <math>\frac{\pi}{4}</math> and compute the right-endpoint Riemann sum of <math style="vertical-align: -5px">y=\sin (x).</math> |
Line 7: | Line 7: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | | |
+ | '''1.''' The height of each rectangle in the right-hand Riemann sum | ||
|- | |- | ||
− | | | + | | is given by choosing the right endpoint of the interval. |
− | |||
|- | |- | ||
| | | | ||
− | + | '''2.''' See the Riemann sums (insert link) for more information. | |
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 20: | Line 21: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math style="vertical-align: -5px">f(x)=\sin(x) | + | |Let <math style="vertical-align: -5px">f(x)=\sin(x).</math> |
|- | |- | ||
− | | | + | |Each interval has length <math>\frac{\pi}{4}.</math> |
+ | |- | ||
+ | |Therefore, the right-endpoint Riemann sum of <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[0,\pi]</math> is | ||
|- | |- | ||
| | | | ||
− | + | <math>\frac{\pi}{4}\bigg(f\bigg(\frac{\pi}{4}\bigg)+f\bigg(\frac{\pi}{2}\bigg)+f\bigg(\frac{3\pi}{4}\bigg)+f(\pi)\bigg).</math> | |
|} | |} | ||
Line 34: | Line 37: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)} & = & \displaystyle{\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)}\\ | \displaystyle{\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)} & = & \displaystyle{\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)}\\ | ||
&&\\ | &&\\ | ||
Line 40: | Line 43: | ||
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | <math>\frac{\pi}{4}(\sqrt{2}+1)</math> | + | | <math>\frac{\pi}{4}(\sqrt{2}+1)</math> |
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 11:18, 9 April 2017
Divide the interval into four subintervals of equal length and compute the right-endpoint Riemann sum of
Foundations: |
---|
1. The height of each rectangle in the right-hand Riemann sum |
is given by choosing the right endpoint of the interval. |
2. See the Riemann sums (insert link) for more information. |
Solution:
Step 1: |
---|
Let |
Each interval has length |
Therefore, the right-endpoint Riemann sum of on the interval is |
|
Step 2: |
---|
Thus, the right-endpoint Riemann sum is |
|
Final Answer: |
---|