Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
| Line 7: | Line 7: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
| − | |||
| − | |||
|- | |- | ||
| − | |'''1.''' | + | |'''1.''' Recall the trig identity |
|- | |- | ||
| − | | | + | | <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math> |
|- | |- | ||
| − | |How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | + | |'''2.''' Recall |
| + | |- | ||
| + | | <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math> | ||
| + | |- | ||
| + | |'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | ||
|- | |- | ||
| | | | ||
| − | + | You can use <math style="vertical-align: 0px">u</math>-substitution. | |
| + | |- | ||
| + | | Let <math style="vertical-align: -2px">u=\tan x.</math> | ||
| + | |- | ||
| + | | Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> | ||
|- | |- | ||
| | | | ||
| − | + | Thus, | |
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
\displaystyle{\int \sec^2(x)\tan(x)~dx} & = & \displaystyle{\int u~du}\\ | \displaystyle{\int \sec^2(x)\tan(x)~dx} & = & \displaystyle{\int u~du}\\ | ||
&&\\ | &&\\ | ||
& = & \displaystyle{\frac{u^2}{2}+C}\\ | & = & \displaystyle{\frac{u^2}{2}+C}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\frac{\tan^2x}{2}+C.} | + | & = & \displaystyle{\frac{\tan^2x}{2}+C.} |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
| Line 36: | Line 44: | ||
|First, we write | |First, we write | ||
|- | |- | ||
| − | | | + | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math> |
| − | + | |- | |
| + | |Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math> | ||
|- | |- | ||
| − | | | + | |we have |
|- | |- | ||
| − | | | + | | <math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math> |
| − | |||
|- | |- | ||
| − | |Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get | + | |Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get |
|- | |- | ||
| − | | | + | | |
| − | + | <math>\begin{array}{rcl} | |
\displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\int \tan^2(x) (\sec^2(x)-1)~dx}\\ | \displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\int \tan^2(x) (\sec^2(x)-1)~dx}\\ | ||
&&\\ | &&\\ | ||
& = & \displaystyle{\int \tan^2(x)\sec^2(x)~dx-\int \tan^2(x)~dx}\\ | & = & \displaystyle{\int \tan^2(x)\sec^2(x)~dx-\int \tan^2(x)~dx}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx | + | & = & \displaystyle{\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx} |
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
| − | |using the identity again on the last equality. | + | |by using the identity again on the last equality. |
|} | |} | ||
| Line 63: | Line 71: | ||
|So, we have | |So, we have | ||
|- | |- | ||
| − | | | + | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math> |
| − | + | |- | |
| + | |For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. | ||
| + | |- | ||
| + | |Let <math style="vertical-align: -5px">u=\tan(x).</math> | ||
|- | |- | ||
| − | | | + | |Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> |
|- | |- | ||
|So, we have | |So, we have | ||
|- | |- | ||
| − | | | + | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int u^2~du-\int (\sec^2(x)-1)~dx.</math> |
| − | |||
|} | |} | ||
| Line 80: | Line 90: | ||
|- | |- | ||
| | | | ||
| − | + | <math>\begin{array}{rcl} | |
\displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\frac{u^3}{3}-(\tan(x)-x)+C}\\ | \displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\frac{u^3}{3}-(\tan(x)-x)+C}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\frac{\tan^3(x)}{3}-\tan(x)+x+C.} | + | & = & \displaystyle{\frac{\tan^3(x)}{3}-\tan(x)+x+C.} |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | <math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math> | + | | <math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 11:16, 9 April 2017
Evaluate the integral:
| Foundations: |
|---|
| 1. Recall the trig identity |
| 2. Recall |
| 3. How would you integrate |
|
You can use -substitution. |
| Let |
| Then, |
|
Thus, |
Solution:
| Step 1: |
|---|
| First, we write |
| Using the trig identity |
| we have |
| Plugging in the last identity into one of the we get |
|
|
| by using the identity again on the last equality. |
| Step 2: |
|---|
| So, we have |
| For the first integral, we need to use -substitution. |
| Let |
| Then, |
| So, we have |
| Step 3: |
|---|
| We integrate to get |
|
|
| Final Answer: |
|---|