Difference between revisions of "009B Sample Midterm 2, Problem 4"
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |'''1.''' Integration by parts tells us | + | |'''1.''' Integration by parts tells us |
|- | |- | ||
− | |'''2.''' How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math> | + | | <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math> |
+ | |- | ||
+ | |'''2.''' How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math> | ||
|- | |- | ||
| | | | ||
− | + | You can use integration by parts. | |
|- | |- | ||
| | | | ||
− | + | Let <math style="vertical-align: -5px">u=\sin(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> | |
+ | |- | ||
+ | | Then, <math style="vertical-align: -5px">du=\cos(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> | ||
|- | |- | ||
| | | | ||
− | + | Thus, <math style="vertical-align: -15px">\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx.</math> | |
|- | |- | ||
| | | | ||
− | + | Now, we need to use integration by parts a second time. | |
|- | |- | ||
| | | | ||
− | + | Let <math style="vertical-align: -5px">u=\cos(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> | |
+ | |- | ||
+ | | Then, <math style="vertical-align: -5px">du=-\sin(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> | ||
+ | |- | ||
+ | | Therefore, | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\ | \displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\ | ||
&&\\ | &&\\ | ||
Line 34: | Line 42: | ||
|- | |- | ||
| | | | ||
− | + | Notice, we are back where we started. | |
|- | |- | ||
− | | | + | | Therefore, adding the last term on the right hand side to the opposite side, we get |
− | |||
|- | |- | ||
| | | | ||
− | + | <math style="vertical-align: -13px">2\int e^x\sin (x)~dx=e^x(\sin(x)-\cos(x)).</math> | |
|- | |- | ||
| | | | ||
− | + | Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math> | |
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 50: | Line 58: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We proceed using integration by parts. Let <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math> | + | |We proceed using integration by parts. |
+ | |- | ||
+ | |Let <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> | ||
+ | |- | ||
+ | |Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math> | ||
|- | |- | ||
− | | | + | |Thus, we get |
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int e^{-2x}\sin (2x)~dx} & = & \displaystyle{\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}}\\ | \displaystyle{\int e^{-2x}\sin (2x)~dx} & = & \displaystyle{\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx.} | + | & = & \displaystyle{\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx.} |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 65: | Line 77: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we need to use integration by parts again. Let <math style="vertical-align: -5px">u=\cos(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> Then, <math style="vertical-align: -5px">du=-2\sin(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math> | + | |Now, we need to use integration by parts again. |
+ | |- | ||
+ | |Let <math style="vertical-align: -5px">u=\cos(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> | ||
+ | |- | ||
+ | |Then, <math style="vertical-align: -5px">du=-2\sin(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math> | ||
|- | |- | ||
− | | | + | |Therefore, we get |
|- | |- | ||
| | | | ||
− | + | <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx.</math> | |
|} | |} | ||
Line 76: | Line 92: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
− | |Notice that the integral on the right of the last equation in Step 2 is the same integral that we had at the beginning of the problem. | + | |Notice that the integral on the right of the last equation in Step 2 |
+ | |- | ||
+ | |is the same integral that we had at the beginning of the problem. | ||
|- | |- | ||
− | | | + | |Thus, if we add the integral on the right to the other side of the equation, we get |
|- | |- | ||
− | | | + | | <math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}.</math> |
− | |||
|- | |- | ||
|Now, we divide both sides by 2 to get | |Now, we divide both sides by 2 to get | ||
|- | |- | ||
− | | | + | | <math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}.</math> |
− | |||
|- | |- | ||
|Thus, the final answer is | |Thus, the final answer is | ||
|- | |- | ||
− | | | + | | <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C.</math> |
− | |||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | <math>\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math> | + | | <math>\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 11:16, 9 April 2017
Evaluate the integral:
Foundations: |
---|
1. Integration by parts tells us |
2. How would you integrate |
You can use integration by parts. |
Let and |
Then, and |
Thus, |
Now, we need to use integration by parts a second time. |
Let and |
Then, and |
Therefore, |
|
Notice, we are back where we started. |
Therefore, adding the last term on the right hand side to the opposite side, we get |
|
Hence, |
Solution:
Step 1: |
---|
We proceed using integration by parts. |
Let and |
Then, and |
Thus, we get |
|
Step 2: |
---|
Now, we need to use integration by parts again. |
Let and |
Then, and |
Therefore, we get |
|
Step 3: |
---|
Notice that the integral on the right of the last equation in Step 2 |
is the same integral that we had at the beginning of the problem. |
Thus, if we add the integral on the right to the other side of the equation, we get |
Now, we divide both sides by 2 to get |
Thus, the final answer is |
Final Answer: |
---|