Difference between revisions of "009B Sample Midterm 2, Problem 2"
Jump to navigation
Jump to search
| Line 103: | Line 103: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' | + | | '''(a)''' |
|- | |- | ||
| − | |'''The Fundamental Theorem of Calculus, Part 1''' | + | | '''The Fundamental Theorem of Calculus, Part 1''' |
|- | |- | ||
| − | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> | + | | Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b),</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> | + | | Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b),</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> |
|- | |- | ||
| − | |'''The Fundamental Theorem of Calculus, Part 2''' | + | | '''The Fundamental Theorem of Calculus, Part 2''' |
|- | |- | ||
| − | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math> | + | | Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | + | | Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> |
|- | |- | ||
| − | |'''(b)''' <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x))</math> | + | | '''(b)''' <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x))</math> |
|- | |- | ||
| − | |'''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1</math> | + | | '''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 14:05, 18 April 2016
This problem has three parts:
- a) State the Fundamental Theorem of Calculus.
- b) Compute .
- c) Evaluate .
| Foundations: |
|---|
| 1. What does Part 1 of the Fundamental Theorem of Calculus say about |
|
| 2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants? |
|
Solution:
(a)
| Step 1: |
|---|
| The Fundamental Theorem of Calculus has two parts. |
| The Fundamental Theorem of Calculus, Part 1 |
|
|
| Step 2: |
|---|
| The Fundamental Theorem of Calculus, Part 2 |
|
|
(b)
| Step 1: |
|---|
| Let The problem is asking us to find |
| Let and |
| Then, |
| Step 2: |
|---|
| If we take the derivative of both sides of the last equation, we get by the Chain Rule. |
| Step 3: |
|---|
| Now, and by the Fundamental Theorem of Calculus, Part 1. |
| Since we have |
|
|
(c)
| Step 1: |
|---|
| Using the Fundamental Theorem of Calculus, Part 2, we have |
|
|
| Step 2: |
|---|
| So, we get |
|
|
| Final Answer: |
|---|
| (a) |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let |
| Then, is a differentiable function on and |
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of |
| Then, |
| (b) |
| (c) |