Difference between revisions of "009B Sample Midterm 1"
Line 1: | Line 1: | ||
− | '''This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar.''' | + | '''This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar.''' |
'''Click on the''' '''<span class="biglink" style="color:darkblue;"> boxed problem numbers </span> to go to a solution.''' | '''Click on the''' '''<span class="biglink" style="color:darkblue;"> boxed problem numbers </span> to go to a solution.''' | ||
Line 7: | Line 7: | ||
<span class="exam">Evaluate the indefinite and definite integrals. | <span class="exam">Evaluate the indefinite and definite integrals. | ||
− | + | <span class="exam">(a) <math>\int x^2\sqrt{1+x^3}~dx</math> | |
− | + | ||
+ | <span class="exam">(b) <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math> | ||
== [[009B_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | == [[009B_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam"> Otis Taylor plots the price per share of a stock that he owns as a function of time |
+ | |||
+ | <span class="exam">and finds that it can be approximated by the function | ||
+ | |||
+ | ::<math>s(t)=t(25-5t)+18</math> | ||
− | + | <span class="exam">where <math style="vertical-align: 0px">t</math> is the time (in years) since the stock was purchased. | |
+ | <span class="exam">Find the average price of the stock over the first five years. | ||
== [[009B_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | == [[009B_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | ||
<span class="exam"> Evaluate the indefinite and definite integrals. | <span class="exam"> Evaluate the indefinite and definite integrals. | ||
− | + | <span class="exam">(a) <math>\int x^2 e^x~dx</math> | |
− | + | ||
+ | <span class="exam">(b) <math>\int_{1}^{e} x^3\ln x~dx</math> | ||
== [[009B_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | == [[009B_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | ||
Line 28: | Line 35: | ||
== [[009B_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | == [[009B_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | ||
− | <span class="exam"> Let <math style="vertical-align: -5px">f(x)=1-x^2</math>. | + | <span class="exam"> Let <math style="vertical-align: -5px">f(x)=1-x^2</math>. |
+ | |||
+ | <span class="exam">(a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. | ||
+ | |||
+ | <span class="exam">(b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. | ||
+ | |||
+ | <span class="exam">(c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit. | ||
− | |||
− | |||
− | |||
'''Contributions to this page were made by [[Contributors|Kayla Murray]]''' | '''Contributions to this page were made by [[Contributors|Kayla Murray]]''' |
Revision as of 10:58, 9 April 2017
This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
Evaluate the indefinite and definite integrals.
(a)
(b)
Problem 2
Otis Taylor plots the price per share of a stock that he owns as a function of time
and finds that it can be approximated by the function
where is the time (in years) since the stock was purchased.
Find the average price of the stock over the first five years.
Problem 3
Evaluate the indefinite and definite integrals.
(a)
(b)
Problem 4
Evaluate the integral:
Problem 5
Let .
(a) Compute the left-hand Riemann sum approximation of with boxes.
(b) Compute the right-hand Riemann sum approximation of with boxes.
(c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
Contributions to this page were made by Kayla Murray