Difference between revisions of "009A Sample Final 1, Problem 3"
Jump to navigation
Jump to search
Line 97: | Line 97: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math style="vertical-align: -14px">f'(x)=\frac{4x}{x^4-1}</math> | + | | '''(a)''' <math style="vertical-align: -14px">f'(x)=\frac{4x}{x^4-1}</math> |
|- | |- | ||
− | |'''(b)''' <math style="vertical-align: -18px">g'(x)=8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}</math> | + | | '''(b)''' <math style="vertical-align: -18px">g'(x)=8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}</math> |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 14:13, 18 April 2016
Find the derivatives of the following functions.
a)
b)
Foundations: |
---|
For functions and , recall |
|
|
|
Solution:
(a)
Step 1: |
---|
Using the Chain Rule, we have |
Step 2: |
---|
Now, we need to calculate |
To do this, we use the Quotient Rule. So, we have |
(b)
Step 1: |
---|
Again, we need to use the Chain Rule. We have |
|
Step 2: |
---|
We need to calculate |
We use the Chain Rule again to get |
|
Final Answer: |
---|
(a) |
(b) |