Difference between revisions of "009A Sample Final 1, Problem 1"

From Math Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''L'Hôpital's Rule'''  
+
|
 +
::'''L'Hôpital's Rule'''  
 
|-
 
|-
|Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&thinsp; and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&thinsp; are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
+
|
 +
::Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&thinsp; and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&thinsp; are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|-
 
|
 
|

Revision as of 11:04, 18 April 2016

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

a)
b)
c)
Foundations:  
Recall:
L'Hôpital's Rule
Suppose that   and   are both zero or both
If   is finite or 
then

Solution:

(a)

Step 1:  
We begin by factoring the numerator. We have
So, we can cancel   in the numerator and denominator. Thus, we have
Step 2:  
Now, we can just plug in   to get

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{2\cos(2x)}{2x}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{\cos(2x)}{x}.}\\ \end{array}}
Step 2:  
This limit is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +\infty.}

(c)

Step 1:  
We have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}.}
Since we are looking at the limit as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} goes to negative infinity, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{x^2}=-x.}
So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.}
Step 2:  
We simplify to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.}
So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.}
Final Answer:  
(a)Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9}
(b)Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +\infty}
(c)Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{3}{2}}

Return to Sample Exam