Difference between revisions of "009B Sample Midterm 1, Problem 2"
Jump to navigation
Jump to search
Line 10: | Line 10: | ||
|- | |- | ||
| | | | ||
− | ::<math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx</math> | + | ::<math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx.</math> |
|} | |} | ||
Line 20: | Line 20: | ||
|- | |- | ||
| | | | ||
− | ::<math | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{f_{\text{avg}}} & = & \displaystyle{\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int_0^2 x^3(1+x^2)^4~dx.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 26: | Line 30: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we use <math>u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^2</math> | + | |Now, we use <math>u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^2.</math> Then, <math style="vertical-align: 0px">du=2x dx</math> and <math style="vertical-align: -13px">\frac{du}{2}=xdx.</math> Also, <math style="vertical-align: 0px">x^2=u-1.</math> |
|- | |- | ||
− | |We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5</math> | + | |We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5.</math> |
|- | |- | ||
− | |So, the integral becomes <math | + | |So, the integral becomes |
+ | |- | ||
+ | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{f_{\text{avg}}} & = & \displaystyle{\int_0^2 x\cdot x^2 (1+x^2)^4~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{2}\int_1^5(u-1)u^4~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{2}\int_1^5(u^5-u^4)~du.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 38: | Line 51: | ||
|We integrate to get | |We integrate to get | ||
|- | |- | ||
− | | | + | | |
− | + | ::<math>\begin{array}{rcl} | |
− | + | \displaystyle{f_{\text{avg}}} & = & \displaystyle{\left.\frac{u^6}{12}-\frac{u^5}{10}\right|_{1}^5}\\ | |
− | + | &&\\ | |
− | + | & = & \displaystyle{\left.u^5\bigg(\frac{u}{12}-\frac{1}{10}\bigg)\right|_{1}^5.}\\ | |
+ | \end{array}</math> | ||
|} | |} | ||
Line 50: | Line 64: | ||
|We evaluate to get | |We evaluate to get | ||
|- | |- | ||
− | | | + | | |
− | + | ::<math>\begin{array}{rcl} | |
− | + | \displaystyle{f_{\text{avg}}} & = & \displaystyle{5^5\bigg(\frac{5}{12}-\frac{1}{10}\bigg)-1^5\bigg(\frac{1}{12}-\frac{1}{10}\bigg)}\\ | |
− | + | &&\\ | |
− | + | & = & \displaystyle{3125\bigg(\frac{19}{60}\bigg)-\frac{-1}{60}}\\ | |
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{59376}{60}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{4948}{5}.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Revision as of 12:58, 18 April 2016
Find the average value of the function on the given interval.
Foundations: |
---|
The average value of a function on an interval is given by |
|
Solution:
Step 1: |
---|
Using the formula given in Foundations, we have: |
|
Step 2: |
---|
Now, we use -substitution. Let Then, and Also, |
We need to change the bounds on the integral. We have and |
So, the integral becomes |
|
Step 3: |
---|
We integrate to get |
|
Step 4: |
---|
We evaluate to get |
|
Final Answer: |
---|