Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Math Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
|-
 
|-
 
|
 
|
::<math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx</math>.
+
::<math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx.</math>
 
|}
 
|}
  
Line 20: Line 20:
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: 0px">f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx=\int_0^2 x^3(1+x^2)^4~dx.</math>  
+
::<math>\begin{array}{rcl}
 +
\displaystyle{f_{\text{avg}}} & = & \displaystyle{\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int_0^2 x^3(1+x^2)^4~dx.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 26: Line 30:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we use <math>u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^2</math>. Then, <math style="vertical-align: 0px">du=2x dx</math> and <math style="vertical-align: -13px">\frac{du}{2}=xdx</math>. Also, <math style="vertical-align: 0px">x^2=u-1</math>.
+
|Now, we use <math>u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^2.</math> Then, <math style="vertical-align: 0px">du=2x dx</math> and <math style="vertical-align: -13px">\frac{du}{2}=xdx.</math> Also, <math style="vertical-align: 0px">x^2=u-1.</math>
 
|-
 
|-
|We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5</math>.
+
|We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5.</math>
 
|-
 
|-
|So, the integral becomes <math style="vertical-align: -19px">f_{\text{avg}}=\int_0^2 x\cdot x^2 (1+x^2)^4~dx=\frac{1}{2}\int_1^5(u-1)u^4~du=\frac{1}{2}\int_1^5(u^5-u^4)~du</math>.
+
|So, the integral becomes  
 +
|-
 +
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{f_{\text{avg}}} & = & \displaystyle{\int_0^2 x\cdot x^2 (1+x^2)^4~dx}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}\int_1^5(u-1)u^4~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}\int_1^5(u^5-u^4)~du.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 38: Line 51:
 
|We integrate to get
 
|We integrate to get
 
|-
 
|-
| &nbsp; &nbsp; <math>f_{\text{avg}}=\left.\frac{u^6}{12}-\frac{u^5}{10}\right|_{1}^5=\left.u^5\bigg(\frac{u}{12}-\frac{1}{10}\bigg)\right|_{1}^5.</math>
+
|  
|-
+
::<math>\begin{array}{rcl}
|
+
\displaystyle{f_{\text{avg}}} & = & \displaystyle{\left.\frac{u^6}{12}-\frac{u^5}{10}\right|_{1}^5}\\
|-
+
&&\\
|
+
& = & \displaystyle{\left.u^5\bigg(\frac{u}{12}-\frac{1}{10}\bigg)\right|_{1}^5.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 50: Line 64:
 
|We evaluate to get
 
|We evaluate to get
 
|-
 
|-
| &nbsp; &nbsp; <math style="vertical-align: -20px">f_{\text{avg}}=5^5\bigg(\frac{5}{12}-\frac{1}{10}\bigg)-1^5\bigg(\frac{1}{12}-\frac{1}{10}\bigg)=3125\bigg(\frac{19}{60}\bigg)-\frac{-1}{60}=\frac{59376}{60}=\frac{4948}{5}</math>.
+
|  
|-
+
::<math>\begin{array}{rcl}
|
+
\displaystyle{f_{\text{avg}}} & = & \displaystyle{5^5\bigg(\frac{5}{12}-\frac{1}{10}\bigg)-1^5\bigg(\frac{1}{12}-\frac{1}{10}\bigg)}\\
|-
+
&&\\
|
+
& = & \displaystyle{3125\bigg(\frac{19}{60}\bigg)-\frac{-1}{60}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{59376}{60}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{4948}{5}.}\\
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 12:58, 18 April 2016

Find the average value of the function on the given interval.


Foundations:  
The average value of a function on an interval is given by

Solution:

Step 1:  
Using the formula given in Foundations, we have:
Step 2:  
Now, we use -substitution. Let Then, and Also,
We need to change the bounds on the integral. We have and
So, the integral becomes
Step 3:  
We integrate to get
Step 4:  
We evaluate to get
Final Answer:  
   

Return to Sample Exam