Difference between revisions of "009B Sample Midterm 2, Problem 2"
Jump to navigation
Jump to search
| Line 33: | Line 33: | ||
|'''The Fundamental Theorem of Calculus, Part 1''' | |'''The Fundamental Theorem of Calculus, Part 1''' | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math> | + | | |
| + | :Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> | ||
|- | |- | ||
| − | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> | + | | |
| + | :Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b),</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> | ||
|} | |} | ||
| Line 43: | Line 45: | ||
|'''The Fundamental Theorem of Calculus, Part 2''' | |'''The Fundamental Theorem of Calculus, Part 2''' | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math> | + | | |
| + | :Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math> | ||
|- | |- | ||
| − | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math> | + | | |
| + | :Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | ||
|} | |} | ||
'''(b)''' | '''(b)''' | ||
| Line 52: | Line 56: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt</math> | + | |Let <math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt.</math> The problem is asking us to find <math style="vertical-align: -5px">F'(x).</math> |
|- | |- | ||
| − | |Let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt</math> | + | |Let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt.</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: -5px">F(x)=G(g(x))</math> | + | |Then, <math style="vertical-align: -5px">F(x)=G(g(x)).</math> |
|} | |} | ||
| Line 70: | Line 74: | ||
|Now, <math style="vertical-align: -5px">g'(x)=-\sin(x)</math> and <math style="vertical-align: -5px">G'(x)=\sin(x)</math> by the '''Fundamental Theorem of Calculus, Part 1'''. | |Now, <math style="vertical-align: -5px">g'(x)=-\sin(x)</math> and <math style="vertical-align: -5px">G'(x)=\sin(x)</math> by the '''Fundamental Theorem of Calculus, Part 1'''. | ||
|- | |- | ||
| − | |Since <math style="vertical-align: -6px">G'(g(x))=\sin(g(x))=\sin(\cos(x))</math> | + | |Since <math style="vertical-align: -6px">G'(g(x))=\sin(g(x))=\sin(\cos(x)),</math> we have |
| + | |- | ||
| + | | | ||
| + | ::<math style="vertical-align: -5px">F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x)).</math> | ||
|} | |} | ||
| Line 80: | Line 87: | ||
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have | | Using the '''Fundamental Theorem of Calculus, Part 2''', we have | ||
|- | |- | ||
| − | | | + | | |
| + | ::<math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}.</math> | ||
|} | |} | ||
| Line 87: | Line 95: | ||
|- | |- | ||
|So, we get | |So, we get | ||
| − | |||
| − | |||
|- | |- | ||
| | | | ||
| + | ::<math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.</math> | ||
|} | |} | ||
| Line 100: | Line 107: | ||
|'''The Fundamental Theorem of Calculus, Part 1''' | |'''The Fundamental Theorem of Calculus, Part 1''' | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math> | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> | + | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b),</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> |
|- | |- | ||
|'''The Fundamental Theorem of Calculus, Part 2''' | |'''The Fundamental Theorem of Calculus, Part 2''' | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math> | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math> | + | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> |
|- | |- | ||
| − | |'''(b)''' <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x))</math> | + | |'''(b)''' <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x))</math> |
|- | |- | ||
| − | |'''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1</math> | + | |'''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 13:42, 18 April 2016
This problem has three parts:
- a) State the Fundamental Theorem of Calculus.
- b) Compute .
- c) Evaluate .
| Foundations: |
|---|
| 1. What does Part 1 of the Fundamental Theorem of Calculus say about |
|
| 2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants? |
|
Solution:
(a)
| Step 1: |
|---|
| The Fundamental Theorem of Calculus has two parts. |
| The Fundamental Theorem of Calculus, Part 1 |
|
|
| Step 2: |
|---|
| The Fundamental Theorem of Calculus, Part 2 |
|
|
(b)
| Step 1: |
|---|
| Let The problem is asking us to find |
| Let and |
| Then, |
| Step 2: |
|---|
| If we take the derivative of both sides of the last equation, we get by the Chain Rule. |
| Step 3: |
|---|
| Now, and by the Fundamental Theorem of Calculus, Part 1. |
| Since we have |
|
|
(c)
| Step 1: |
|---|
| Using the Fundamental Theorem of Calculus, Part 2, we have |
|
|
| Step 2: |
|---|
| So, we get |
|
|
| Final Answer: |
|---|
| (a) |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let |
| Then, is a differentiable function on and |
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of |
| Then, |
| (b) |
| (c) |