Difference between revisions of "009B Sample Midterm 2, Problem 1"

From Math Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math>&thinsp; and the <math>x</math>-axis.
 
<span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math>&thinsp; and the <math>x</math>-axis.
  
::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>.
+
::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and  
 +
 
 +
:::<span class="exam">indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>.
 
::<span class="exam">b) Find an expression for the area of the region <math style="vertical-align: 0px">S</math> as a limit. Do not evaluate the limit.
 
::<span class="exam">b) Find an expression for the area of the region <math style="vertical-align: 0px">S</math> as a limit. Do not evaluate the limit.
  
Line 12: Line 14:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval.
+
|
 +
::'''1.''' The height of each rectangle in the left-hand Riemann sum is given by  
 +
|-
 +
|
 +
:::choosing the left endpoint of the interval.
 +
|-
 +
|
 +
::'''2.''' The height of each rectangle in the right-hand Riemann sum is given by
 
|-
 
|-
|'''2.''' The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
+
|
 +
:::choosing the right endpoint of the interval.
 
|-
 
|-
|'''3.''' See the page on [[Riemann_Sums|'''Riemann Sums''']] for more information.
+
|
 +
::'''3.''' See the page on [[Riemann_Sums|'''Riemann Sums''']] for more information.
 
|}
 
|}
  
Line 25: Line 36:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}</math>. Since our interval is <math style="vertical-align: -5px">[1,5]</math> and we are using 4 rectangles, each rectangle has width 1. Since the problem doesn't specify, we can choose either right- or left-endpoints.  Choosing left-endpoints, the Riemann sum is  
+
|Let <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}.</math>  Since our interval is <math style="vertical-align: -5px">[1,5]</math> and we are using <math style="vertical-align: -1px">4</math> rectangles, each rectangle has width <math style="vertical-align: -1px">1.</math> Since the problem doesn't specify, we can choose either right- or left-endpoints.  Choosing left-endpoints, the Riemann sum is  
|-
 
| &nbsp;&nbsp; <math>1\cdot (f(1)+f(2)+f(3)+f(4))</math>. 
 
 
|-
 
|-
 
|
 
|
 +
::<math>1\cdot (f(1)+f(2)+f(3)+f(4)).</math> 
 
|}
 
|}
  
Line 37: Line 47:
 
|Thus, the left-endpoint Riemann sum is  
 
|Thus, the left-endpoint Riemann sum is  
 
|-
 
|-
| &nbsp;&nbsp; <math>1\cdot (f(1)+f(2)+f(3)+f(4))=\bigg(1+\frac{1}{4}+\frac{1}{9}+{1}{16}\bigg)=\frac{205}{144}</math>.  
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{1\cdot (f(1)+f(2)+f(3)+f(4))} & = & \displaystyle{\bigg(1+\frac{1}{4}+\frac{1}{9}+{1}{16}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{205}{144}.}\\
 +
\end{array}</math>   
 
|-
 
|-
|The left-endpoint Riemann sum overestimates the area of <math style="vertical-align: 0px">S</math>.
+
|The left-endpoint Riemann sum overestimates the area of <math style="vertical-align: 0px">S.</math>
 
|}
 
|}
  
Line 46: Line 61:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the left-endpoint Riemann sum for <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}</math>.
+
|Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the left-endpoint Riemann sum for <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}.</math>
|-
 
|The width of each rectangle is <math style="vertical-align: -13px">\Delta x=\frac{5-1}{n}=\frac{4}{n}</math>.
 
 
|-
 
|-
|
+
|The width of each rectangle is
 
|-
 
|-
 
|
 
|
 +
::<math style="vertical-align: -13px">\Delta x=\frac{5-1}{n}=\frac{4}{n}.</math>
 
|}
 
|}
  
Line 60: Line 74:
 
|So, the left-endpoint Riemann sum is  
 
|So, the left-endpoint Riemann sum is  
 
|-
 
|-
| &nbsp;&nbsp; <math>\Delta x \bigg(f(1)+f\bigg(1+\frac{4}{n}\bigg)+f\bigg(1+2\frac{4}{n}\bigg)+\ldots +f\bigg(1+(n-1)\frac{4}{n}\bigg)\bigg)</math>.
+
|
 +
::<math>\Delta x \bigg(f(1)+f\bigg(1+\frac{4}{n}\bigg)+f\bigg(1+2\frac{4}{n}\bigg)+\ldots +f\bigg(1+(n-1)\frac{4}{n}\bigg)\bigg).</math>
 
|-
 
|-
 
|Now, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit.   
 
|Now, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit.   
 
|-
 
|-
|So, the area of <math style="vertical-align: 0px">S</math> is equal to <math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}f\bigg(1+i\frac{4}{n}\bigg)\,=\,\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}</math>.
+
|So, the area of <math style="vertical-align: 0px">S</math> is equal to  
 +
|-
 +
|
 +
::<math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}f\bigg(1+i\frac{4}{n}\bigg)\,=\,\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}.</math>
 
|}
 
|}
  
Line 74: Line 92:
 
|'''(b)''' Using left-endpoint Riemann sums:  
 
|'''(b)''' Using left-endpoint Riemann sums:  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}</math>
+
|
 +
::<math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:36, 18 April 2016

Consider the region bounded by   and the -axis.

a) Use four rectangles and a Riemann sum to approximate the area of the region . Sketch the region and the rectangles and
indicate whether your rectangles overestimate or underestimate the area of .
b) Find an expression for the area of the region as a limit. Do not evaluate the limit.


Approximation of integral with left endpoints is an overestimate.
Foundations:  
Recall:
1. The height of each rectangle in the left-hand Riemann sum is given by
choosing the left endpoint of the interval.
2. The height of each rectangle in the right-hand Riemann sum is given by
choosing the right endpoint of the interval.
3. See the page on Riemann Sums for more information.

Solution:

(a)

Step 1:  
Let Since our interval is and we are using rectangles, each rectangle has width Since the problem doesn't specify, we can choose either right- or left-endpoints. Choosing left-endpoints, the Riemann sum is
Step 2:  
Thus, the left-endpoint Riemann sum is
The left-endpoint Riemann sum overestimates the area of

(b)

Step 1:  
Let be the number of rectangles used in the left-endpoint Riemann sum for
The width of each rectangle is
Step 2:  
So, the left-endpoint Riemann sum is
Now, we let go to infinity to get a limit.
So, the area of is equal to
Final Answer:  
(a) The left-endpoint Riemann sum is , which overestimates the area of .
(b) Using left-endpoint Riemann sums:

Return to Sample Exam