Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Math Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|-
 
|-
 
|
 
|
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\ln(x).</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math>
+
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\ln(x).</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math> Thus,
 
|-
 
|-
 
|
 
|
::Thus, <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx\,=\,\int u~du\,=\,\frac{u^2}{2}+C\,=\,\frac{(\ln x)^2}{2}+C.</math>
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{\ln x}{x}~dx} & = & \displaystyle{\int u~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{u^2}{2}+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{(\ln x)^2}{2}+C.}\\
 +
\end{array}</math>
 
|}
 
|}
 
'''Solution:'''
 
'''Solution:'''
Line 22: Line 28:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^3</math>. Then, <math style="vertical-align: 0px">du=3x^2dx</math> and&thinsp; <math style="vertical-align: -13px">\frac{du}{3}=x^2dx</math>.
+
|We need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^3.</math> Then, <math style="vertical-align: 0px">du=3x^2dx</math> and&thinsp; <math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math>
 
|-
 
|-
|Therefore, the integral becomes&thinsp; <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du</math>.
+
|Therefore, the integral becomes&thinsp;  
 +
|-
 +
|
 +
::<math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math>
 
|}
 
|}
  
Line 32: Line 41:
 
|We now have:
 
|We now have:
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -13px">\int x^2\sqrt{1+x^3}~dx=\frac{1}{3}\int \sqrt{u}~du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>.
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int x^2\sqrt{1+x^3}~dx} & = & \displaystyle{\int x^2\sqrt{1+x^3}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{3}\int \sqrt{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2}{9}u^{\frac{3}{2}}+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 39: Line 57:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Again, we need to use <math>u</math>-substitution. Let <math style="vertical-align: -5px">u=\sin(x)</math>. Then, <math style="vertical-align: -5px">du=\cos(x)dx</math>. Also, we need to change the bounds of integration.
+
|Again, we need to use <math>u</math>-substitution. Let <math style="vertical-align: -5px">u=\sin(x).</math> Then, <math style="vertical-align: -5px">du=\cos(x)dx.</math> Also, we need to change the bounds of integration.
 
|-
 
|-
|Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x)</math>, we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1</math>.
+
|Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x),</math> we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math>
 
|-
 
|-
|Therefore, the integral becomes <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du</math>.
+
|Therefore, the integral becomes  
 
|-
 
|-
 
|
 
|
 +
::<math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math>
 
|}
 
|}
  
Line 52: Line 71:
 
|-
 
|-
 
|We now have:  
 
|We now have:  
|-
 
|&nbsp; &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}</math>.
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du}\\
 +
&&\\
 +
& = & \displaystyle{\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1}\\
 +
&&\\
 +
& = & \displaystyle{-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}}\\
 +
&&\\
 +
& = & \displaystyle{-1+\sqrt{2}.}\\
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 12:50, 18 April 2016

Evaluate the indefinite and definite integrals.

a)
b)


Foundations:  
How would you integrate
You could use -substitution. Let Then, Thus,

Solution:

(a)

Step 1:  
We need to use -substitution. Let Then, and 
Therefore, the integral becomes 
Step 2:  
We now have:

(b)

Step 1:  
Again, we need to use -substitution. Let Then, Also, we need to change the bounds of integration.
Plugging in our values into the equation we get and
Therefore, the integral becomes
Step 2:  
We now have:
Final Answer:  
(a)  
(b)  

Return to Sample Exam