Difference between revisions of "009A Sample Final 1, Problem 7"

From Math Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
::::::<math>x^3+y^3=6xy.</math>
 
::::::<math>x^3+y^3=6xy.</math>
  
<span class="exam">a) Using implicit differentiation, compute &thinsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>.
+
::<span class="exam">a) Using implicit differentiation, compute &thinsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>.
  
<span class="exam">b) Find an equation of the tangent line to the curve <math style="vertical-align: -4px">x^3+y^3=6xy</math> at the point <math style="vertical-align: -5px">(3,3)</math>.
+
::<span class="exam">b) Find an equation of the tangent line to the curve <math style="vertical-align: -4px">x^3+y^3=6xy</math> at the point <math style="vertical-align: -5px">(3,3)</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 49: Line 49:
 
::<math>3x^2-6y=\frac{dy}{dx}(6x-3y^2).</math>
 
::<math>3x^2-6y=\frac{dy}{dx}(6x-3y^2).</math>
 
|-
 
|-
|We solve to get &nbsp;<math style="vertical-align: -17px">\frac{dy}{dx}=\frac{3x^2-6y}{6x-3y^2}.</math>
+
|We solve to get  
 +
|-
 +
|
 +
::<math style="vertical-align: -17px">\frac{dy}{dx}=\frac{3x^2-6y}{6x-3y^2}.</math>
 
|}
 
|}
  

Revision as of 11:17, 18 April 2016

A curve is defined implicitly by the equation

a) Using implicit differentiation, compute  .
b) Find an equation of the tangent line to the curve at the point .
Foundations:  
1. What is the result of implicit differentiation of
It would be    by the Product Rule.
2. What two pieces of information do you need to write the equation of a line?
You need the slope of the line and a point on the line.
3. What is the slope of the tangent line of a curve?
The slope is 

Solution:

(a)

Step 1:  
Using implicit differentiation on the equation  we get
Step 2:  
Now, we move all the    terms to one side of the equation.
So, we have
We solve to get

(b)

Step 1:  
First, we find the slope of the tangent line at the point  
We plug   into the formula for    we found in part (a).
So, we get
Step 2:  
Now, we have the slope of the tangent line at   and a point.
Thus, we can write the equation of the line.
So, the equation of the tangent line at   is
9AF1 7 GP.png
Final Answer:  
(a)
(b)

Return to Sample Exam