Difference between revisions of "009A Sample Final 1, Problem 5"

From Math Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''The Pythagorean Theorem:''' For a right triangle with side lengths <math style="vertical-align: -4px">a,b,c</math>, where <math style="vertical-align: 0px">c</math> is the length of the  
+
|
 +
::'''The Pythagorean Theorem:'''  
 +
|-
 +
|
 +
::For a right triangle with side lengths <math style="vertical-align: -4px">a,b,c</math>, where <math style="vertical-align: 0px">c</math> is the length of the  
 
|-
 
|-
 
|
 
|
Line 32: Line 36:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|If&thinsp; <math style="vertical-align: -4px">s=50,</math> then&thinsp; <math style="vertical-align: -2px">h=\sqrt{50^2-30^2}=40.</math>
+
|If&thinsp; <math style="vertical-align: -4px">s=50,</math> then
 
|-
 
|-
|So, we have&thinsp; <math style="vertical-align: -5px">2(40)6=2(50)s'.</math>
+
|
 +
::<math style="vertical-align: -2px">h=\sqrt{50^2-30^2}=40.</math>
 
|-
 
|-
|Solving for&thinsp; <math style="vertical-align: -5px">s',</math> we get&thinsp; <math style="vertical-align: -14px">s'=\frac{24}{5}</math>&thinsp; m/s.
+
|So, we have
 +
|-
 +
|
 +
::<math style="vertical-align: -5px">2(40)6=2(50)s'.</math>
 +
|-
 +
|Solving for&thinsp; <math style="vertical-align: -5px">s',</math> we get
 +
|-
 +
|
 +
::<math style="vertical-align: -14px">s'=\frac{24}{5}</math>&thinsp; m/s.
 
|}
 
|}
  

Revision as of 11:09, 18 April 2016

A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing

when 50 (meters) of the string has been let out?

Foundations:  
Recall:
The Pythagorean Theorem:
For a right triangle with side lengths , where is the length of the
hypotenuse, we have

Solution:

Step 1:  
9AF 5 GP.png
From the diagram, we have by the Pythagorean Theorem.
Taking derivatives, we get
Step 2:  
If  then
So, we have
Solving for  we get
  m/s.
Final Answer:  
  m/s

Return to Sample Exam