Difference between revisions of "009A Sample Final 1, Problem 6"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Consider the following function: ::::::<math>f(x)=3x-2\sin x+7</math> <span class="exam">a) Use the Intermediate Value Theorem to show that <math style="...")
 
Line 3: Line 3:
 
::::::<math>f(x)=3x-2\sin x+7</math>
 
::::::<math>f(x)=3x-2\sin x+7</math>
  
<span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>&thinsp; has at least one zero.
+
::<span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>&thinsp; has at least one zero.
  
<span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>&thinsp; has at most one zero.
+
::<span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>&thinsp; has at most one zero.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 12: Line 12:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1. Intermediate Value Theorem:''' If <math style="vertical-align: -5px">f(x)</math>&thinsp; is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math> and <math style="vertical-align: 0px">c</math> is any number
+
|'''1. Intermediate Value Theorem:'''  
 
|-
 
|-
 
|
 
|
::between <math style="vertical-align: -5px">f(a)</math>&thinsp; and <math style="vertical-align: -5px">f(b)</math>, then there is at least one number <math style="vertical-align: 0px">x</math> in the closed interval such that <math style="vertical-align: -5px">f(x)=c.</math>
+
::If <math style="vertical-align: -5px">f(x)</math>&thinsp; is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math> and <math style="vertical-align: 0px">c</math> is any number between <math style="vertical-align: -5px">f(a)</math>&thinsp; and <math style="vertical-align: -5px">f(b)</math>,
 
|-
 
|-
|'''2. Mean Value Theorem:''' Suppose <math style="vertical-align: -5px">f(x)</math>&thinsp; is a function that satisfies the following:
+
|
 +
::then there is at least one number <math style="vertical-align: 0px">x</math> in the closed interval such that <math style="vertical-align: -5px">f(x)=c.</math>
 +
|-
 +
|'''2. Mean Value Theorem:'''  
 +
|-
 +
|
 +
::Suppose <math style="vertical-align: -5px">f(x)</math>&thinsp; is a function that satisfies the following:
 
|-
 
|-
 
|
 
|
Line 38: Line 44:
 
|First note that&thinsp; <math style="vertical-align: -5px">f(0)=7.</math>
 
|First note that&thinsp; <math style="vertical-align: -5px">f(0)=7.</math>
 
|-
 
|-
|Also,&thinsp; <math style="vertical-align: -5px">f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5).</math>
+
|Also,
 +
|-
 +
|
 +
::<math style="vertical-align: -5px">f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5).</math>
 
|-
 
|-
 
|Since&thinsp; <math style="vertical-align: -5px">-1\leq \sin(x) \leq 1,</math>
 
|Since&thinsp; <math style="vertical-align: -5px">-1\leq \sin(x) \leq 1,</math>
Line 71: Line 80:
 
|We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math>&thinsp; Since &thinsp;<math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math>
 
|We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math>&thinsp; Since &thinsp;<math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math>
 
|-
 
|-
|<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math>&thinsp; So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math>
+
|
 +
::<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math>&thinsp;  
 +
|-
 +
|So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math> which contradicts <math style="vertical-align: -5px">f'(c)=0.</math>
 
|-
 
|-
|which contradicts <math style="vertical-align: -5px">f'(c)=0.</math> Thus, <math style="vertical-align: -5px">f(x)</math>&thinsp; has at most one zero.
+
| Thus, <math style="vertical-align: -5px">f(x)</math>&thinsp; has at most one zero.
 
|}
 
|}
  

Revision as of 11:15, 18 April 2016

Consider the following function:

a) Use the Intermediate Value Theorem to show that   has at least one zero.
b) Use the Mean Value Theorem to show that   has at most one zero.
Foundations:  
Recall:
1. Intermediate Value Theorem:
If   is continuous on a closed interval and is any number between   and ,
then there is at least one number in the closed interval such that
2. Mean Value Theorem:
Suppose   is a function that satisfies the following:
  is continuous on the closed interval  
  is differentiable on the open interval
Then, there is a number such that    and

Solution:

(a)

Step 1:  
First note that 
Also,
Since 
Thus,    and hence  
Step 2:  
Since   and    there exists with    such that
  by the Intermediate Value Theorem. Hence,   has at least one zero.

(b)

Step 1:  
Suppose that has more than one zero. So, there exist such that  
Then, by the Mean Value Theorem, there exists with   such that  
Step 2:  
We have   Since  
So, which contradicts
Thus,   has at most one zero.
Final Answer:  
(a) Since   and    there exists with    such that
  by the Intermediate Value Theorem. Hence,   has at least one zero.
(b) See Step 1 and Step 2 above.

Return to Sample Exam