Difference between revisions of "009A Sample Final 1, Problem 3"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Find the derivatives of the following functions. <span class="exam">a) <math style="vertical-align: -16px">f(x)=\ln \bigg(\frac{x^2-1}{x^2+1}\bigg)</math>...")
 
Line 12: Line 12:
 
|&nbsp;
 
|&nbsp;
 
|-
 
|-
|'''Chain Rule:'''&nbsp; <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math>
+
|
 +
::'''Chain Rule:'''&nbsp; <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math>
 
|-
 
|-
 
|&nbsp;
 
|&nbsp;
 
|-
 
|-
|'''Quotient Rule:'''&nbsp; <math>\frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}</math>
+
|
 +
::'''Quotient Rule:'''&nbsp; <math>\frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}</math>
 
|-
 
|-
 
|&nbsp;
 
|&nbsp;
 
|-
 
|-
|'''Trig Derivatives:'''&nbsp; <math>\frac{d}{dx}(\sin x)=\cos x,\quad\frac{d}{dx}(\tan x)=\sec^2 x</math>
+
|
 +
::'''Trig Derivatives:'''&nbsp; <math>\frac{d}{dx}(\sin x)=\cos x,\quad\frac{d}{dx}(\tan x)=\sec^2 x</math>
 
|-
 
|-
 
|&nbsp;
 
|&nbsp;

Revision as of 11:03, 18 April 2016

Find the derivatives of the following functions.

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\ln \bigg(\frac{x^2-1}{x^2+1}\bigg)}

b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=2\sin (4x)+4\tan (\sqrt{1+x^3})}

Foundations:  
For functions Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   and , recall
 
Chain Rule: 
 
Quotient Rule: 
 
Trig Derivatives: 
 

Solution:

(a)

Step 1:  
Using the Chain Rule, we have

Step 2:  
Now, we need to calculate  
To do this, we use the Quotient Rule. So, we have

(b)

Step 1:  
Again, we need to use the Chain Rule. We have
Step 2:  
We need to calculate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\sqrt{1+x^3}.}
We use the Chain Rule again to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg)}\\ &&\\ & = & \displaystyle{8\cos(4x)+4\sec^2(\sqrt{1+x^3})\frac{1}{2}(1+x^3)^{-\frac{1}{2}}3x^2}\\ &&\\ & = & \displaystyle{8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}.}\\ \end{array}}
Final Answer:  
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{4x}{x^4-1}}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}}

Return to Sample Exam