Difference between revisions of "009B Sample Final 1, Problem 5"
Jump to navigation
Jump to search
Line 3: | Line 3: | ||
::::::<span class="exam"> <math style="vertical-align: 0px">x=0</math>, <math style="vertical-align: -4px">y=e^x</math>, and <math style="vertical-align: -4px">y=ex</math>. | ::::::<span class="exam"> <math style="vertical-align: 0px">x=0</math>, <math style="vertical-align: -4px">y=e^x</math>, and <math style="vertical-align: -4px">y=ex</math>. | ||
− | <span class="exam">a) Sketch the region bounded by the given three functions. Find the intersection point of the two functions: | + | ::<span class="exam">a) Sketch the region bounded by the given three functions. Find the intersection point of the two functions: |
− | :<span class="exam"><math style="vertical-align: -4px">y=e^x</math> and <math style="vertical-align: -4px">y=ex</math>. (There is only one.) | + | ::::::<span class="exam"><math style="vertical-align: -4px">y=e^x</math> and <math style="vertical-align: -4px">y=ex</math>. (There is only one.) |
− | <span class="exam">b) Set up the integral for the volume of the solid. | + | ::<span class="exam">b) Set up the integral for the volume of the solid. |
− | <span class="exam">c) Find the volume of the solid by computing the integral. | + | ::<span class="exam">c) Find the volume of the solid by computing the integral. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 16: | Line 16: | ||
|Recall: | |Recall: | ||
|- | |- | ||
− | |'''1.''' You can find the intersection points of two functions, say <math style="vertical-align: -5px">f(x),g(x),</math> | + | | |
+ | ::'''1.''' You can find the intersection points of two functions, say <math style="vertical-align: -5px">f(x),g(x),</math> | ||
|- | |- | ||
| | | | ||
− | ::by setting <math style="vertical-align: -5px">f(x)=g(x)</math> and solving for <math style="vertical-align: 0px">x</math> | + | :::by setting <math style="vertical-align: -5px">f(x)=g(x)</math> and solving for <math style="vertical-align: 0px">x.</math> |
|- | |- | ||
− | |'''2.''' The volume of a solid obtained by rotating an area around the <math style="vertical-align: -4px">y</math>-axis using cylindrical shells is given by | + | | |
+ | ::'''2.''' The volume of a solid obtained by rotating an area around the <math style="vertical-align: -4px">y</math>-axis using cylindrical shells is given by | ||
|- | |- | ||
| | | | ||
− | ::<math style="vertical-align: -13px">\int 2\pi rh~dx,</math> where <math style="vertical-align: 0px">r</math> is the radius of the shells and <math style="vertical-align: 0px">h</math> is the height of the shells. | + | :::<math style="vertical-align: -13px">\int 2\pi rh~dx,</math> where <math style="vertical-align: 0px">r</math> is the radius of the shells and <math style="vertical-align: 0px">h</math> is the height of the shells. |
|} | |} | ||
Line 44: | Line 46: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Setting the equations equal, we have <math style="vertical-align: 0px">e^x=ex</math> | + | |Setting the equations equal, we have <math style="vertical-align: 0px">e^x=ex.</math> |
|- | |- | ||
− | |We get one intersection point, which is <math style="vertical-align: -4px">(1,e)</math> | + | |We get one intersection point, which is <math style="vertical-align: -4px">(1,e).</math> |
|- | |- | ||
|This intersection point can be seen in the graph shown in Step 1. | |This intersection point can be seen in the graph shown in Step 1. | ||
Line 56: | Line 58: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We proceed using cylindrical shells. The radius of the shells is given by <math style="vertical-align: 0px">r=x</math> | + | |We proceed using cylindrical shells. The radius of the shells is given by <math style="vertical-align: 0px">r=x.</math> |
+ | |- | ||
+ | |The height of the shells is given by | ||
|- | |- | ||
− | | | + | | |
+ | ::<math style="vertical-align: 0px">h=e^x-ex.</math> | ||
|} | |} | ||
Line 86: | Line 91: | ||
|For the first integral, we need to use integration by parts. | |For the first integral, we need to use integration by parts. | ||
|- | |- | ||
− | |Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^xdx</math> | + | |Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> Then, <math style="vertical-align: 0px">du=dx</math> and <math style="vertical-align: 0px">v=e^x.</math> |
|- | |- | ||
|So, the integral becomes | |So, the integral becomes |
Revision as of 12:07, 18 April 2016
Consider the solid obtained by rotating the area bounded by the following three functions about the -axis:
- , , and .
- a) Sketch the region bounded by the given three functions. Find the intersection point of the two functions:
- and . (There is only one.)
- b) Set up the integral for the volume of the solid.
- c) Find the volume of the solid by computing the integral.
Foundations: |
---|
Recall: |
|
|
|
|
Solution:
(a)
Step 1: |
---|
First, we sketch the region bounded by the three functions. The region is shown in red, while the revolved solid is shown in blue. |
Step 2: |
---|
Setting the equations equal, we have |
We get one intersection point, which is |
This intersection point can be seen in the graph shown in Step 1. |
(b)
Step 1: |
---|
We proceed using cylindrical shells. The radius of the shells is given by |
The height of the shells is given by |
|
Step 2: |
---|
So, the volume of the solid is |
|
(c)
Step 1: |
---|
We need to integrate |
|
Step 2: |
---|
For the first integral, we need to use integration by parts. |
Let and Then, and |
So, the integral becomes |
|
Final Answer: |
---|
(a) (See Step 1 for the graph) |
(b) |
(c) |