Difference between revisions of "009B Sample Midterm 1, Problem 5"

From Math Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
 
::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
 
::<span class="exam">c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
 
::<span class="exam">c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|See the page on [[Riemann_Sums|'''Riemann Sums''']].
+
|Recall:
 +
|-
 +
|'''1.''' The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval.
 +
|-
 +
|'''2.''' The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
 +
|-
 +
|'''3.''' See the page on [[Riemann_Sums|'''Riemann Sums''']] for more information.
 
|}
 
|}
  

Revision as of 14:09, 8 April 2016

Let .

a) Compute the left-hand Riemann sum approximation of with boxes.
b) Compute the right-hand Riemann sum approximation of with boxes.
c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
Foundations:  
Recall:
1. The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval.
2. The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
3. See the page on Riemann Sums for more information.

Solution:

(a)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is
   .
Step 2:  
Thus, the left-hand Riemann sum is
   .

(b)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is
   .
Step 2:  
Thus, the right-hand Riemann sum is
   .

(c)

Step 1:  
Let be the number of rectangles used in the right-hand Riemann sum for .
The width of each rectangle is .
Step 2:  
So, the right-hand Riemann sum is
   .
Finally, we let go to infinity to get a limit.
Thus, is equal to
    .
Final Answer:  
(a)  
(b)  
(c)  

Return to Sample Exam