Difference between revisions of "009B Sample Midterm 1, Problem 5"

From Math Wiki
Jump to navigation Jump to search
Line 73: Line 73:
 
|Finally, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit.   
 
|Finally, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit.   
 
|-
 
|-
|Thus, <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> is equal to <math style="vertical-align: -21px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math>.
+
|Thus, <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> is equal to
 +
|-
 +
| &nbsp;&nbsp; <math style="vertical-align: -21px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)\,=\,\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}\bigg(1-\bigg(i\frac{3}{n}\bigg)^2\bigg)</math>&thinsp;.
 
|}
 
|}
  
Line 83: Line 85:
 
|'''(b)''' &nbsp;<math style="vertical-align: -2px">-11</math>
 
|'''(b)''' &nbsp;<math style="vertical-align: -2px">-11</math>
 
|-
 
|-
|'''(c)''' &nbsp;<math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math>
+
|'''(c)''' &nbsp;<math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}\bigg(1-\bigg(i\frac{3}{n}\bigg)^2\bigg)</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:55, 2 February 2016

Let .

a) Compute the left-hand Riemann sum approximation of with boxes.
b) Compute the right-hand Riemann sum approximation of with boxes.
c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.


Foundations:  
See the page on Riemann Sums.

Solution:

(a)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is
   .
Step 2:  
Thus, the left-hand Riemann sum is
   .

(b)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is
   .
Step 2:  
Thus, the right-hand Riemann sum is
   .

(c)

Step 1:  
Let be the number of rectangles used in the right-hand Riemann sum for .
The width of each rectangle is .
Step 2:  
So, the right-hand Riemann sum is
   .
Finally, we let go to infinity to get a limit.
Thus, is equal to
    .
Final Answer:  
(a)  
(b)  
(c)  

Return to Sample Exam