Difference between revisions of "009B Sample Midterm 1, Problem 5"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Let <math>f(x)=1-x^2</math>. ::<span class="exam">a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~d...")
 
Line 9: Line 9:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|Link to Riemann sums page
+
|See the page on [[Riemann_Sums|'''Riemann Sums''']].
 
|}
 
|}
  

Revision as of 14:41, 1 February 2016

Let .

a) Compute the left-hand Riemann sum approximation of with boxes.
b) Compute the right-hand Riemann sum approximation of with boxes.
c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.


Foundations:  
See the page on Riemann Sums.

Solution:

(a)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is
   .
Step 2:  
Thus, the left-hand Riemann sum is
   .

(b)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is
   .
Step 2:  
Thus, the right-hand Riemann sum is
   .

(c)

Step 1:  
Let be the number of rectangles used in the right-hand Riemann sum for .
The width of each rectangle is .
Step 2:  
So, the right-hand Riemann sum is
   .
Finally, we let go to infinity to get a limit.
Thus, is equal to .
Final Answer:  
(a)  
(b)  
(c)  

Return to Sample Exam