Difference between revisions of "009B Sample Midterm 1, Problem 2"
Jump to navigation
Jump to search
(Created page with "<span class="exam">Find the average value of the function on the given interval. ::<math>f(x)=2x^3(1+x^2)^4,~~~[0,2]</math> {| class="mw-collapsible mw-collapsed" style = "...") |
|||
Line 7: | Line 7: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |The average value of a function <math style="vertical-align: -5px">f(x)</math> on an interval <math style="vertical-align: -5px">[a,b]</math> is given by <math | + | |The average value of a function <math style="vertical-align: -5px">f(x)</math> on an interval <math style="vertical-align: -5px">[a,b]</math> is given by |
+ | |- | ||
+ | | | ||
+ | ::<math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx</math>. | ||
|} | |} | ||
Line 16: | Line 19: | ||
|Using the formula given in Foundations, we have: | |Using the formula given in Foundations, we have: | ||
|- | |- | ||
− | | | + | | |
+ | ::<math style="vertical-align: 0px">f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx=\int_0^2 x^3(1+x^2)^4~dx.</math> | ||
|} | |} | ||
Revision as of 09:40, 18 April 2016
Find the average value of the function on the given interval.
Foundations: |
---|
The average value of a function on an interval is given by |
|
Solution:
Step 1: |
---|
Using the formula given in Foundations, we have: |
|
Step 2: |
---|
Now, we use -substitution. Let . Then, and . Also, . |
We need to change the bounds on the integral. We have and . |
So, the integral becomes . |
Step 3: |
---|
We integrate to get |
Step 4: |
---|
We evaluate to get |
. |
Final Answer: |
---|