Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Evaluate the indefinite and definite integrals. ::<span class="exam">a) <math>\int x^2\sqrt{1+x^3}~dx</math> ::<span class="exam">b) <math>\int _{\frac{\pi...")
 
Line 8: Line 8:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
| Review <math style="vertical-align: 0px">u</math>-substitution.
+
| How would you integrate <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx?</math>
 +
|-
 +
|
 +
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\ln(x).</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math>
 +
|-
 +
|
 +
::Thus, <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx\,=\,\int u~du\,=\,\frac{u^2}{2}+C\,=\,\frac{(\ln x)^2}{2}+C.</math>
 
|}
 
|}
 
 
'''Solution:'''
 
'''Solution:'''
  

Revision as of 14:02, 8 April 2016

Evaluate the indefinite and definite integrals.

a)
b)


Foundations:  
How would you integrate
You could use -substitution. Let Then,
Thus,

Solution:

(a)

Step 1:  
We need to use -substitution. Let . Then, and  .
Therefore, the integral becomes  .
Step 2:  
We now have:
    .

(b)

Step 1:  
Again, we need to use -substitution. Let . Then, . Also, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Therefore, the integral becomes .
Step 2:  
We now have:
    .
Final Answer:  
(a)  
(b)  

Return to Sample Exam