Difference between revisions of "022 Sample Final A, Problem 14"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Find the following limit: <math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - 14}</math>. {| class="mw-col...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> Find the following limit: <math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - | + | <span class="exam"> Find the following limit: <math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - 15}</math>. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 25: | Line 25: | ||
|Note that the first requirement in l'Hôpital's Rule is that the fraction <u>''must''</u> be an indeterminate form. This should be shown in your answer for any exam question.<br> | |Note that the first requirement in l'Hôpital's Rule is that the fraction <u>''must''</u> be an indeterminate form. This should be shown in your answer for any exam question.<br> | ||
|} | |} | ||
+ | |||
+ | '''Solution:''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! | + | !Step 1: |
|- | |- | ||
− | | | + | |We take the limit and find that |
+ | ::<math>\lim_{x \rightarrow -3}\frac{(x)^2 + 7(x) + 12}{(x)^2 - 2(x) - 15}\,=\,\frac{9-21+12}{9+6-15}\,=\,\frac{0}{0}.</math> | ||
+ | |- | ||
+ | |This is an indeterminate form, and we need to apply l'Hôpital's Rule. | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | |Applying l'Hôpital's Rule (by taking the derivative of the numerator and denominator separately), we find: | ||
|- | |- | ||
| | | | ||
− | ::<math>\ | + | ::<math>\begin{array}{rcl} |
− | + | \displaystyle{\lim_{x \rightarrow -3}\frac{x^2 + 7x + 12}{x^2 - 5x -15}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow -3}\frac{2x + 7}{2x -2}}\\ | |
− | + | &&\\ | |
− | + | & = & \displaystyle{\frac{2(-3) + 7}{2(-3) - 2}}\\ | |
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{~1}{-8}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 43: | Line 56: | ||
|- | |- | ||
| | | | ||
− | ::<math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - 14}\,=\, | + | ::<math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - 14}\,=\, -\frac{1}{8}.</math> |
|} | |} | ||
[[022_Sample_Final_A|'''<u>Return to Sample Exam</u>''']] | [[022_Sample_Final_A|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 16:19, 6 June 2015
Find the following limit: .
Foundations: |
---|
When evaluating limits of rational functions, the first idea to try is to simply plug in the limit. In addition to this, we must consider that as a limit, |
and |
In the latter case, the sign matters. Unfortunately, most (but not all) exam questions require more work. Many of them will evaluate to an indeterminate form, or something of the form |
or |
In this case, there are several approaches to try: |
|
Note that the first requirement in l'Hôpital's Rule is that the fraction must be an indeterminate form. This should be shown in your answer for any exam question. |
Solution:
Step 1: |
---|
We take the limit and find that
|
This is an indeterminate form, and we need to apply l'Hôpital's Rule. |
Step 2: |
---|
Applying l'Hôpital's Rule (by taking the derivative of the numerator and denominator separately), we find: |
|
Final Answer: |
---|
|