Difference between revisions of "022 Sample Final A, Problem 14"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Find the following limit: <math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - 14}</math>. {| class="mw-col...") |
|||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | <span class="exam"> Find the following limit: <math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - | + | <span class="exam"> Find the following limit: <math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - 15}</math>. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 25: | Line 25: | ||
|Note that the first requirement in l'Hôpital's Rule is that the fraction <u>''must''</u> be an indeterminate form. This should be shown in your answer for any exam question.<br> | |Note that the first requirement in l'Hôpital's Rule is that the fraction <u>''must''</u> be an indeterminate form. This should be shown in your answer for any exam question.<br> | ||
|} | |} | ||
| + | |||
| + | '''Solution:''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | ! | + | !Step 1: |
|- | |- | ||
| − | | | + | |We take the limit and find that |
| + | ::<math>\lim_{x \rightarrow -3}\frac{(x)^2 + 7(x) + 12}{(x)^2 - 2(x) - 15}\,=\,\frac{9-21+12}{9+6-15}\,=\,\frac{0}{0}.</math> | ||
| + | |- | ||
| + | |This is an indeterminate form, and we need to apply l'Hôpital's Rule. | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 2: | ||
| + | |- | ||
| + | |Applying l'Hôpital's Rule (by taking the derivative of the numerator and denominator separately), we find: | ||
|- | |- | ||
| | | | ||
| − | ::<math>\ | + | ::<math>\begin{array}{rcl} |
| − | + | \displaystyle{\lim_{x \rightarrow -3}\frac{x^2 + 7x + 12}{x^2 - 5x -15}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow -3}\frac{2x + 7}{2x -2}}\\ | |
| − | + | &&\\ | |
| − | + | & = & \displaystyle{\frac{2(-3) + 7}{2(-3) - 2}}\\ | |
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{~1}{-8}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 43: | Line 56: | ||
|- | |- | ||
| | | | ||
| − | ::<math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - 14}\,=\, | + | ::<math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - 14}\,=\, -\frac{1}{8}.</math> |
|} | |} | ||
[[022_Sample_Final_A|'''<u>Return to Sample Exam</u>''']] | [[022_Sample_Final_A|'''<u>Return to Sample Exam</u>''']] | ||
Latest revision as of 16:19, 6 June 2015
Find the following limit: .
| Foundations: |
|---|
| When evaluating limits of rational functions, the first idea to try is to simply plug in the limit. In addition to this, we must consider that as a limit, |
| and |
| In the latter case, the sign matters. Unfortunately, most (but not all) exam questions require more work. Many of them will evaluate to an indeterminate form, or something of the form |
or |
In this case, there are several approaches to try: |
|
| Note that the first requirement in l'Hôpital's Rule is that the fraction must be an indeterminate form. This should be shown in your answer for any exam question. |
Solution:
| Step 1: |
|---|
| We take the limit and find that
|
| This is an indeterminate form, and we need to apply l'Hôpital's Rule. |
| Step 2: |
|---|
| Applying l'Hôpital's Rule (by taking the derivative of the numerator and denominator separately), we find: |
|
|
| Final Answer: |
|---|
|
|