Difference between revisions of "Prototype questions"
Jump to navigation
Jump to search
Line 2: | Line 2: | ||
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math> | f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math> | ||
− | {| class="mw-collapsible mw-collapsed" | + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
! Foundations | ! Foundations | ||
|- | |- | ||
Line 21: | Line 21: | ||
Solution: | Solution: | ||
− | {| class = "mw-collapsible mw-collapsed" | + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" |
! Step 1: | ! Step 1: | ||
|- | |- | ||
Line 31: | Line 31: | ||
|} | |} | ||
− | {|class = "mw-collapsible mw-collapsed" | + | {|class = "mw-collapsible mw-collapsed" style = "text-align:left;" |
! Step 2: | ! Step 2: | ||
|- | |- | ||
Line 47: | Line 47: | ||
|} | |} | ||
− | {|class = "mw-collapsible mw-collapsed" | + | {|class = "mw-collapsible mw-collapsed" style = "text-align:left;" |
! Step 3: | ! Step 3: | ||
|- | |- | ||
Line 65: | Line 65: | ||
|} | |} | ||
− | {|class = "mw-collapsible mw-collapsed" | + | {|class = "mw-collapsible mw-collapsed" style = "text-align:left;" |
! Step 4: | ! Step 4: | ||
|- | |- | ||
Line 84: | Line 84: | ||
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math> | f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math> | ||
− | {| class="mw-collapsible mw-collapsed | + | {| class= "wikitable mw-collapsible mw-collapsed" |
! Foundations | ! Foundations | ||
|- | |- | ||
Line 103: | Line 103: | ||
Solution: | Solution: | ||
− | {| class = "mw-collapsible mw-collapsed wikitable" | + | {| class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;" |
! Step 1: | ! Step 1: | ||
|- | |- | ||
Line 113: | Line 113: | ||
|} | |} | ||
− | {|class = "mw-collapsible mw-collapsed wikitable" | + | {|class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;" |
! Step 2: | ! Step 2: | ||
|- | |- | ||
Line 129: | Line 129: | ||
|} | |} | ||
− | {|class = "mw-collapsible mw-collapsed wikitable" | + | {|class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;" |
! Step 3: | ! Step 3: | ||
|- | |- | ||
Line 147: | Line 147: | ||
|} | |} | ||
− | {|class = "mw-collapsible mw-collapsed wikitable" | + | {|class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;" |
! Step 4: | ! Step 4: | ||
|- | |- | ||
Line 171: | Line 171: | ||
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math> | <math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math> | ||
− | {| class="mw-collapsible mw-collapsed" | + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
! Hint 1 | ! Hint 1 | ||
|- | |- | ||
Line 177: | Line 177: | ||
|} | |} | ||
− | {| class="mw-collapsible mw-collapsed" | + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
! Hint 2 | ! Hint 2 | ||
|- | |- | ||
Line 184: | Line 184: | ||
Solution: | Solution: | ||
− | {| class="mw-collapsible mw-collapsed" | + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
! Solution | ! Solution | ||
|- | |- | ||
Line 213: | Line 213: | ||
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math> | <math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math> | ||
− | {| class="mw-collapsible mw-collapsed wikitable" | + | {| class="mw-collapsible mw-collapsed wikitable" style = "text-align:left;" |
! Hint 1 | ! Hint 1 | ||
|- | |- | ||
Line 219: | Line 219: | ||
|} | |} | ||
− | {| class="mw-collapsible mw-collapsed wikitable" | + | {| class="mw-collapsible mw-collapsed wikitable" style = "text-align:left;" |
! Hint 2 | ! Hint 2 | ||
|- | |- | ||
Line 226: | Line 226: | ||
Solution: | Solution: | ||
− | {| class="mw-collapsible mw-collapsed wikitable" | + | {| class="mw-collapsible mw-collapsed wikitable" style = "text-align:left;" |
! Solution | ! Solution | ||
|- | |- |
Latest revision as of 19:01, 24 February 2015
2. Find the domain of the following function. Your answer should use interval notation. f(x) =
Foundations |
---|
The foundations: |
What is the domain of g(x) = ? |
The function is undefined if the denominator is zero, so x 0. |
Rewriting" " in interval notation( -, 0) (0, ) |
What is the domain of h(x) = ? |
The function is undefined if we have a negative number inside the square root, so x 0 |
Solution:
Step 1: |
---|
Factor |
So we can rewrite f(x) as |
Step 2: |
---|
When does the denominator of f(x) = 0? |
(x + 1)(x - 2) = 0 |
(x + 1) = 0 or (x - 2) = 0 |
x = -1 or x = 2 |
So, since the function is undefiend when the denominator is zero, x -1 and x 2 |
Step 3: |
---|
What is the domain of |
critical points: x = -1, x = 2 |
Test points: |
x = -2: (-2 + 1)(-2 - 2): (-1)(-4) = 4 > 0 |
x = 0: (0 + 1)(0 - 2) = -2 < 0 |
x = 3: (3 + 1)(3 - 2): 4*1 = 4 > 0 |
So the domain of h(x) is |
Step 4: |
---|
Take the intersection (i.e. common points) of Steps 2 and 3. |
2. Find the domain of the following function. Your answer should use interval notation. f(x) =
Foundations |
---|
The foundations: |
What is the domain of g(x) = ? |
The function is undefined if the denominator is zero, so x 0. |
Rewriting"x 0" in interval notation( -, 0) (0, ) |
What is the domain of h(x) = ? |
The function is undefined if we have a negative number inside the square root, so x 0 |
Solution:
Step 1: |
---|
Factor |
So we can rewrite f(x) as |
Step 2: |
---|
When does the denominator of f(x) = 0? |
(x + 1)(x - 2) = 0 |
(x + 1) = 0 or (x - 2) = 0 |
x = -1 or x = 2 |
So, since the function is undefinend when the denominator is zero, x -1 and x 2 |
Step 3: |
---|
What is the domain of |
critical points: x = -1, x = 2 |
Test points: |
x = -2: (-2 + 1)(-2 - 2): (-1)(-4) = 4 > 0 |
x = 0: (0 + 1)(0 - 2) = -2 < 0 |
x = 3: (3 + 1)(3 - 2): 4*1 = 4 > 0 |
So the domain of h(x) is |
Step 4: |
---|
Take the intersection (i.e. common points) of Steps 2 and 3. |
2. Find the domain of the following function. Your answer should use interval notation.
Hint 1 |
---|
Which x-values lead to division by 0 or square rooting a negative number |
Hint 2 |
---|
Use a sign chart to determine for which x-values |
Solution:
Solution |
---|
Since the domain is the collection of x-values for which we don't divide by zero or square root a negative number we want to solve the inequality |
Now we use a sign chart with test numbers -2, 0, and 3 |
So the solution is |
2. Find the domain of the following function. Your answer should use interval notation.
Hint 1 |
---|
Which x-values lead to division by 0 or square rooting a negative number |
Hint 2 |
---|
Use a sign chart to determine for which x-values |
Solution:
Solution |
---|
Since the domain is the collection of x-values for which we don't divide by zero or square root a negative number we want to solve the inequality |
Now we use a sign chart with test numbers -2, 0, and 3 |
So the solution is |