Difference between revisions of "Prototype questions"

From Math Wiki
Jump to navigation Jump to search
(Created page with "2. Find the domain of the following function. Your answer should use interval notation. f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math> {| class="mw-collapsibl...")
 
 
(2 intermediate revisions by one other user not shown)
Line 2: Line 2:
 
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math>
 
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math>
  
{| class="mw-collapsible mw-collapsed"
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Foundations
 
! Foundations
 
|-
 
|-
Line 11: Line 11:
 
|The function is undefined if the denominator is zero, so x <math>\neq </math> 0.
 
|The function is undefined if the denominator is zero, so x <math>\neq </math> 0.
 
|-
 
|-
|Rewriting"x <math>\neq</math> 0" in interval notation( -<math>\infty</math>, 0) <math>\cup</math>(0, <math>\infty</math>)
+
|Rewriting" <math>x \neq 0</math>" in interval notation( -<math>\infty</math>, 0) <math>\cup</math>(0, <math>\infty</math>)
 
|-
 
|-
 
|What is the domain of h(x) = <math> \sqrt{x} </math>?
 
|What is the domain of h(x) = <math> \sqrt{x} </math>?
Line 21: Line 21:
 
Solution:
 
Solution:
  
{| class = "mw-collapsible mw-collapsed"
+
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 1:
 
! Step 1:
 
|-
 
|-
Line 31: Line 31:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed"
+
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 2:
 
! Step 2:
 
|-
 
|-
Line 47: Line 47:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed"
+
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 3:
 
! Step 3:
 
|-
 
|-
Line 65: Line 65:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed"
+
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 4:
 
! Step 4:
 
|-
 
|-
 
|Take the intersection (i.e. common points) of Steps 2 and 3. <math>( - \infty, -1) \cup (2, \infty)</math>
 
|Take the intersection (i.e. common points) of Steps 2 and 3. <math>( - \infty, -1) \cup (2, \infty)</math>
 
|}
 
|}
 
 
 
 
 
  
  
Line 89: Line 84:
 
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math>
 
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math>
  
{| class="mw-collapsible mw-collapsed wikitable"
+
{| class= "wikitable mw-collapsible mw-collapsed"
 
! Foundations
 
! Foundations
 
|-
 
|-
Line 108: Line 103:
 
Solution:
 
Solution:
  
{| class = "mw-collapsible mw-collapsed wikitable"
+
{| class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Step 1:
 
! Step 1:
 
|-
 
|-
Line 118: Line 113:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed wikitable"
+
{|class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Step 2:
 
! Step 2:
 
|-
 
|-
Line 134: Line 129:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed wikitable"
+
{|class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Step 3:
 
! Step 3:
 
|-
 
|-
Line 152: Line 147:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed wikitable"
+
{|class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Step 4:
 
! Step 4:
 
|-
 
|-
Line 176: Line 171:
 
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
 
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
  
{| class="mw-collapsible mw-collapsed"
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Hint 1
 
! Hint 1
 
|-
 
|-
Line 182: Line 177:
 
|}
 
|}
  
{| class="mw-collapsible mw-collapsed"
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Hint 2
 
! Hint 2
 
|-
 
|-
Line 189: Line 184:
  
 
Solution:
 
Solution:
{| class="mw-collapsible mw-collapsed"
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Solution
 
! Solution
 
|-
 
|-
Line 218: Line 213:
 
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
 
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
  
{| class="mw-collapsible mw-collapsed wikitable"
+
{| class="mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Hint 1
 
! Hint 1
 
|-
 
|-
Line 224: Line 219:
 
|}
 
|}
  
{| class="mw-collapsible mw-collapsed wikitable"
+
{| class="mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Hint 2
 
! Hint 2
 
|-
 
|-
Line 231: Line 226:
  
 
Solution:
 
Solution:
{| class="mw-collapsible mw-collapsed wikitable"
+
{| class="mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Solution
 
! Solution
 
|-
 
|-

Latest revision as of 19:01, 24 February 2015

2. Find the domain of the following function. Your answer should use interval notation. f(x) = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} }

Foundations
The foundations:
What is the domain of g(x) = ?
The function is undefined if the denominator is zero, so x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq } 0.
Rewriting" Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \neq 0} " in interval notation( -Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty} , 0) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cup} (0, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty} )
What is the domain of h(x) = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{x} } ?
The function is undefined if we have a negative number inside the square root, so x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ge} 0


Solution:

Step 1:
Factor Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 - x - 2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 - x - 2 = (x + 1) (x - 2)}
So we can rewrite f(x) as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \displaystyle{\frac{1}{\sqrt{(x+1)(x-2)}}}}
Step 2:
When does the denominator of f(x) = 0?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{(x + 1)(x - 2)} = 0}
(x + 1)(x - 2) = 0
(x + 1) = 0 or (x - 2) = 0
x = -1 or x = 2
So, since the function is undefiend when the denominator is zero, x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq} -1 and x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq} 2
Step 3:
What is the domain of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x) = \sqrt{(x + 1)(x - 2)}}
critical points: x = -1, x = 2
Test points:
x = -2: (-2 + 1)(-2 - 2): (-1)(-4) = 4 > 0
x = 0: (0 + 1)(0 - 2) = -2 < 0
x = 3: (3 + 1)(3 - 2): 4*1 = 4 > 0
So the domain of h(x) is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty, -1] \cup [2, \infty)}
Step 4:
Take the intersection (i.e. common points) of Steps 2 and 3. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ( - \infty, -1) \cup (2, \infty)}






2. Find the domain of the following function. Your answer should use interval notation. f(x) = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} }

Foundations
The foundations:
What is the domain of g(x) = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{x}} ?
The function is undefined if the denominator is zero, so x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq } 0.
Rewriting"x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq} 0" in interval notation( -Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty} , 0) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cup} (0, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty} )
What is the domain of h(x) = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{x} } ?
The function is undefined if we have a negative number inside the square root, so x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ge} 0


Solution:

Step 1:
Factor Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 - x - 2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 - x - 2 = (x + 1) (x - 2)}
So we can rewrite f(x) as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \displaystyle{\frac{1}{\sqrt{(x+1)(x-2)}}}}
Step 2:
When does the denominator of f(x) = 0?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{(x + 1)(x - 2)} = 0}
(x + 1)(x - 2) = 0
(x + 1) = 0 or (x - 2) = 0
x = -1 or x = 2
So, since the function is undefinend when the denominator is zero, x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq} -1 and x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq} 2
Step 3:
What is the domain of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x) = \sqrt{(x + 1)(x - 2)}}
critical points: x = -1, x = 2
Test points:
x = -2: (-2 + 1)(-2 - 2): (-1)(-4) = 4 > 0
x = 0: (0 + 1)(0 - 2) = -2 < 0
x = 3: (3 + 1)(3 - 2): 4*1 = 4 > 0
So the domain of h(x) is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty, -1] \cup [2, \infty)}
Step 4:
Take the intersection (i.e. common points) of Steps 2 and 3. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ( - \infty, -1) \cup (2, \infty)}









2. Find the domain of the following function. Your answer should use interval notation. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}}

Hint 1
Which x-values lead to division by 0 or square rooting a negative number
Hint 2
Use a sign chart to determine for which x-values Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2-x-2 > 0}

Solution:

Solution
Since the domain is the collection of x-values for which we don't divide by zero or square root a negative number we want to solve the inequality Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 - x - 2 > 0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x-2)(x+1)>0}
Now we use a sign chart with test numbers -2, 0, and 3
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 0: (0 - 2)(0 + 1) = (-2)(1) = -2 < 0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 3: (3 - 2)(3 + 1)= (1)(4) = 4 > 0}
So the solution is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty, -1) \cup (2, \infty)}





2. Find the domain of the following function. Your answer should use interval notation. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}}

Hint 1
Which x-values lead to division by 0 or square rooting a negative number
Hint 2
Use a sign chart to determine for which x-values Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2-x-2 > 0}

Solution:

Solution
Since the domain is the collection of x-values for which we don't divide by zero or square root a negative number we want to solve the inequality Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 - x - 2 > 0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x-2)(x+1)>0}
Now we use a sign chart with test numbers -2, 0, and 3
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = -2: (-2 - 2)(-2 + 1) = (-4)(-1) = 4 > 0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 0: (0 - 2)(0 + 1) = (-2)(1) = -2 < 0}
So the solution is