Difference between revisions of "022 Exam 2 Sample A, Problem 6"

From Math Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 7: Line 7:
 
|-
 
|-
 
|
 
|
::<math>\int x^n dn = \frac{x^{n+1}}{n+1} + C.</math>
+
::<math style="vertical-align: -70%;">\int x^n\,dx\,=\,\frac{x^{n+1}}{n+1} +C,</math>&thinsp; for <math style="vertical-align: -25%;">n\neq -1.</math>
 +
 
 
|-
 
|-
|Geometrically, we need to integrate the region between the <math style="vertical-align: 0%">x</math>-axis, the curve, and the vertical lines <math style="vertical-align: 0%">x = 1</math> and <math style="vertical-align: 0%">x = 4</math>.
+
|Geometrically, we need to integrate the region between the <math style="vertical-align: 0%">x</math>-axis, the curve, and the vertical lines <math style="vertical-align: -4%">x = 1</math> and <math style="vertical-align: -2%">x = 4</math>.
 
|}
 
|}
  
Line 32: Line 33:
 
\displaystyle{\int_1^{\,4} \frac{8}{\sqrt{x}}\,dx} & = & \displaystyle {\int_1^{\,4} 8x^{-1/2}\,dx}\\
 
\displaystyle{\int_1^{\,4} \frac{8}{\sqrt{x}}\,dx} & = & \displaystyle {\int_1^{\,4} 8x^{-1/2}\,dx}\\
 
\\
 
\\
& = & \displaystyle{\frac{8 x^{1/2}}{2} \Bigr|_{x=1}^4}\\
+
& = & \displaystyle{\frac{8 x^{1/2}}{1/2} \Bigr|_{x=1}^4}\\
 
\\
 
\\
& = & 4x^{1/2}  \Bigr|_{x=1}^4.
+
& = & 16x^{1/2}  \Bigr|_{x=1}^4.
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 44: Line 45:
 
|-
 
|-
 
|
 
|
::<math>4x^{1/2}  \Bigr|_{x=1}^4\,=\,4\cdot 4^{1/2} - 4\cdot 1^{1/2} \,=\, 8 - 4 \,=\, 4.</math>  
+
::<math>16x^{1/2}  \Bigr|_{x=1}^4\,=\,16\cdot 4^{1/2} - 16\cdot 1^{1/2} \,=\, 32 - 16 \,=\, 16.</math>  
 
|}
 
|}
  
Line 51: Line 52:
 
|-
 
|-
 
|
 
|
::<math>\int_1^{\,4} \frac{8}{\sqrt{x}} \,dx\,=\,4.</math>
+
::<math>\int_1^{\,4} \frac{8}{\sqrt{x}} \,dx\,=\,16.</math>
 
|}
 
|}
  
 
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']]
 
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 06:54, 16 May 2015

Find the area under the curve of    between and .

Foundations:  
For solving the problem, we only require the use of the power rule for integration:
  for
Geometrically, we need to integrate the region between the -axis, the curve, and the vertical lines and .

 Solution:

Step 1:  
Set up the integral:
Step 2:  
Using the power rule we have:
Step 3:  
Now we need to evaluate to get:
Final Answer:  

Return to Sample Exam