Difference between revisions of "022 Exam 2 Sample B, Problem 6"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Find the area under the curve of  <math style="vertical-align: -13%">y = 6x^2 + 2x</math> between the <math style="vertical-align: -15%">y</math>-axi...")
 
 
(6 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
|-
 
|-
 
|
 
|
::<math>\int x^n dn = \frac{x^{n+1}}{n+1} + C</math>
+
::<math style="vertical-align: -70%;">\int x^n dn = \frac{x^{n+1}}{n+1} + C</math>&thinsp; for <math style="vertical-align: -23%;">n\neq -1</math>,
 
|-
 
|-
|For setup of the problem we need to integrate the region between the x - axis, the curve, x = 0 (the y-axis), and x = 4.
+
|For setup of the problem we need to integrate the region between the x - axis, the curve, <math style="vertical-align: 0%">x = 0</math> (the y-axis), and <math style="vertical-align: 0%">x = 2</math>.
 
|}
 
|}
  
Line 20: Line 20:
 
|-
 
|-
 
|
 
|
::<math>\int_0^{\,2} 6x^2 + 2x \,dx.</math>
+
::<math>\int_0^{2} 6x^2 + 2x \,dx.</math>
 
|}
 
|}
  
Line 29: Line 29:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
::<math>\int _0^2 6x^2+2x \,dx \,=\, 6\cdot \frac{x^3}{3}+2\cdot \frac{x^2}{2} \Bigr|_{x\,=\,0}^2\,=\,2x^3+x^2 \Bigr|_{x\,=\,0}^2. </math>
\int _0^2 6x^2+2x \,dx &=& 2x^3+x^2 \Bigr|_0^2 \\
 
\end{array}</math>
 
 
|}
 
|}
  
Line 37: Line 35:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
| Now we need to evaluate to get:
+
|Finally, we need to evaluate:
 
|-
 
|-
 
|
 
|
::<math>2x^3 + x^2 \Bigr|_0^2 = (2(2)^3+(2)^2)-(0+0) = 20.</math>  
+
::<math>2x^3 + x^2 \Bigr|_{x\,=\,0}^2 = (2(2)^3+(2)^2)-(0+0) = 20.</math>  
 
|}
 
|}
  

Latest revision as of 16:29, 17 May 2015

Find the area under the curve of  between the -axis and .

Foundations:  
For solving the problem, we only require the use of the power rule for integration:
  for ,
For setup of the problem we need to integrate the region between the x - axis, the curve, (the y-axis), and .

 Solution:

Step 1:  
Set up the integral:
Step 2:  
Using the power rule we have:
Step 3:  
Finally, we need to evaluate:
Final Answer:  

Return to Sample Exam