Difference between revisions of "022 Exam 2 Sample B, Problem 3"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Find the derivative: <math style="vertical-align: -18%">f(x) \,=\, 2x^3e^{3x+5}</math>.") |
|||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> Find the derivative | + | <span class="exam"> Find the derivative of <math style="vertical-align: -18%">f(x) \,=\, 2x^3e^{3x+5}</math>. |
+ | |||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Foundations: | ||
+ | |- | ||
+ | |This problem requires several advanced rules of differentiation. In particular, you need | ||
+ | |- | ||
+ | |'''The Chain Rule:''' If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -15%;">g</math> are differentiable functions, then | ||
+ | |- | ||
+ | |||
+ | |<br> <math>(f\circ g)'(x) = f'(g(x))\cdot g'(x).</math> | ||
+ | |- | ||
+ | |<br>'''The Product Rule:''' If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -15%;">g</math> are differentiable functions, then | ||
+ | |- | ||
+ | |<br> <math>(fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).</math> | ||
+ | |- | ||
+ | |Additionally, we will need our power rule for differentiation: | ||
+ | |- | ||
+ | | | ||
+ | ::<math style="vertical-align: -21%;">\left(x^n\right)'\,=\,nx^{n-1},</math> for <math style="vertical-align: -25%;">n\neq 0</math>, | ||
+ | |- | ||
+ | |as well as the derivative of the exponential function, <math style="vertical-align: 5%">e^x</math>: | ||
+ | |- | ||
+ | | | ||
+ | ::<math>(e^x)'\,=\,e^x.</math> | ||
+ | |<br> | ||
+ | |} | ||
+ | |||
+ | '''Solution:''' | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 1: | ||
+ | |- | ||
+ | |We need to start by identifying the two functions that are being multiplied together so we can apply the product rule. Let's call <math style="vertical-align: -20%">g(x)\,=\,2x^3,\,</math> and <math style="vertical-align: -20%">\,h(x) \, = \, e^{3x + 5}</math>, so <math style="vertical-align: -20%">f(x)=g(x)\cdot h(x)</math>. | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | |We can now apply the advanced techniques.This allows us to see that | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | f'(x)&=&2(x^3)' e^{3x+5}+2x^3(e^{3x+5})' \\ | ||
+ | &=&6x^2e^{3x+5}+2x^3(3e^{3x+5})\\ | ||
+ | & = &6x^2e^{3x+5}+6x^3e^{3x+5}. | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Final Answer: | ||
+ | |- | ||
+ | | | ||
+ | ::<math>f'(x)\,=\,6x^2e^{3x+5}+6x^3e^{3x+5}. | ||
+ | </math> | ||
+ | |} | ||
+ | |||
+ | [[022_Exam_2_Sample_B|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 06:50, 17 May 2015
Find the derivative of .
Foundations: | |
---|---|
This problem requires several advanced rules of differentiation. In particular, you need | |
The Chain Rule: If and are differentiable functions, then | |
The Product Rule: If and are differentiable functions, then | |
Additionally, we will need our power rule for differentiation: | |
| |
as well as the derivative of the exponential function, : | |
|
Solution:
Step 1: |
---|
We need to start by identifying the two functions that are being multiplied together so we can apply the product rule. Let's call and , so . |
Step 2: |
---|
We can now apply the advanced techniques.This allows us to see that |
|
Final Answer: |
---|
|