Difference between revisions of "022 Exam 2 Sample A, Problem 4"
Jump to navigation
Jump to search
(2 intermediate revisions by the same user not shown) | |||
Line 14: | Line 14: | ||
|- | |- | ||
| | | | ||
− | ::<math style="vertical-align: -70%;">\int x^n dx \,=\, \frac{x^{n + 1}}{n + 1}+C,</math>  for <math style="vertical-align: - | + | ::<math style="vertical-align: -70%;">\int x^n dx \,=\, \frac{x^{n + 1}}{n + 1}+C,</math>  for <math style="vertical-align: -23%;">n\neq 0</math>. |
|} | |} | ||
Line 22: | Line 22: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Use a ''u''-substitution with <math style="vertical-align: -8%">u = 3x + 2.</math> This means <math style="vertical-align: 0%">du = 3\,dx</math>, or <math style="vertical-align: - | + | |Use a ''u''-substitution with <math style="vertical-align: -8%">u = 3x + 2.</math> This means <math style="vertical-align: 0%">du = 3\,dx</math>, or <math style="vertical-align: -21%">dx=du/3</math>. After substitution we have |
::<math>\int \left(3x + 2\right)^4 \,dx \,=\, \int u^4 \,\frac{du}{3}\,=\,\frac{1}{3}\int u^4\,du.</math> | ::<math>\int \left(3x + 2\right)^4 \,dx \,=\, \int u^4 \,\frac{du}{3}\,=\,\frac{1}{3}\int u^4\,du.</math> | ||
|} | |} |
Latest revision as of 15:22, 15 May 2015
Find the antiderivative of
Foundations: |
---|
This problem requires three rules of integration. In particular, you need |
Integration by substitution (u - sub): If is a differentiable functions whose range is in the domain of , then |
|
We also need our power rule for integration: |
|
Solution:
Step 1: |
---|
Use a u-substitution with This means , or . After substitution we have
|
Step 2: |
---|
We can no apply the power rule for integration:
|
Step 3: |
---|
Since our original function is a function of , we must substitute back into the result from step 2: |
|
Step 4: |
---|
As will all indefinite integrals, don't forget the constant at the end. |
Final Answer: |
---|
|