Difference between revisions of "022 Exam 2 Sample A, Problem 4"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Find the antiderivative of <math style="vertical-align: -45%">\int (3x+2)^4\,dx.</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;"...")
 
 
(5 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|This problem requires two rules of integration, integration by substitution '''(U - sub)''' and the power rule.
+
|This problem requires three rules of integration.  In particular, you need
 +
|-
 +
|'''Integration by substitution (''u'' - sub):''' If <math style="vertical-align: -25%">u = g(x)</math>&thinsp; is a differentiable functions whose range is in the domain of <math style="vertical-align: -20%">f</math>, then
 
|-
 
|-
 
|
 
|
|-  
+
::<math>\int g'(x)f(g(x)) dx = \int f(u) du.</math>
||Additionally, we will need our power rule for integration:
+
|-
 +
|We also need our power rule for integration:
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -21%;">\int x^n dx \,=\, \frac{x^{n + 1}}{n + 1},</math> for <math style="vertical-align: -25%;">n\neq 0</math>,
+
::<math style="vertical-align: -70%;">\int x^n dx \,=\, \frac{x^{n + 1}}{n + 1}+C,</math>&thinsp; for <math style="vertical-align: -23%;">n\neq 0</math>.
 
|}
 
|}
  
Line 19: Line 22:
 
!Step 1: &nbsp;
 
!Step 1: &nbsp;
 
|-
 
|-
||Use a U-substitution with <math>u = 3x + 2.</math> This means <math>du = 3 dx</math>, and after substitution we have
+
|Use a ''u''-substitution with <math style="vertical-align: -8%">u = 3x + 2.</math> This means <math style="vertical-align: 0%">du = 3\,dx</math>, or <math style="vertical-align: -21%">dx=du/3</math>. After substitution we have
::<math>\int \left(3x + 2\right)^4 dx  = \int u^4 du</math>
+
::<math>\int \left(3x + 2\right)^4 \,dx  \,=\, \int u^4 \,\frac{du}{3}\,=\,\frac{1}{3}\int u^4\,du.</math>
 
|}
 
|}
  
Line 27: Line 30:
 
|-
 
|-
 
|We can no apply the power rule for integration:
 
|We can no apply the power rule for integration:
::<math>\int u^4 du = \frac{u^5}{5}</math>
+
::<math>\frac{1}{3}\int u^4\,du \,=\, \frac{1}{3}\cdot\frac{u^5}{5}\,=\,\frac{u^5}{15}.</math>
 
|}
 
|}
  
Line 33: Line 36:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
| Since our original function is a function of x, we must substitute x back into the result from problem 2:
+
|Since our original function is a function of <math style="vertical-align: 0%">x</math>, we must substitute <math style="vertical-align: 0%">x</math> back into the result from step 2:
 
|-
 
|-
 
|
 
|
::<math>\frac{u^5}{5} = \frac{(3x + 2)^5}{5}</math>
+
::<math>\frac{u^5}{5} \,=\, \frac{(3x + 2)^5}{5}.</math>
 
|}
 
|}
  
Line 42: Line 45:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
| As will all indefinite integrals, don't forget the ''' "+C" ''' at the end.
+
| As will all indefinite integrals, don't forget the constant&thinsp; <math style="vertical-align: 0%">C</math> at the end.
 
|}
 
|}
  
Line 48: Line 51:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|<math>\int \left(3x + 2\right)^5 dx\,=\, \frac{(3x + 2)^5}{5} + C</math>
+
|
 +
::<math>\int \left(3x + 2\right)^4\,dx\,=\, \frac{(3x + 2)^5}{15} + C.</math>
 
|}
 
|}
  
 
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']]
 
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:22, 15 May 2015

Find the antiderivative of

Foundations:  
This problem requires three rules of integration. In particular, you need
Integration by substitution (u - sub): If   is a differentiable functions whose range is in the domain of , then
We also need our power rule for integration:
  for .

 Solution:

Step 1:  
Use a u-substitution with This means , or . After substitution we have
Step 2:  
We can no apply the power rule for integration:
Step 3:  
Since our original function is a function of , we must substitute back into the result from step 2:
Step 4:  
As will all indefinite integrals, don't forget the constant  at the end.
Final Answer:  

Return to Sample Exam