Difference between revisions of "009C Sample Midterm 3, Problem 3"

From Math Wiki
Jump to navigation Jump to search
m
 
Line 1: Line 1:
<span class="exam">Test if each the following series converges or diverges. Give reasons
+
<span class="exam">Test if each the following series converges or diverges.  
and clearly state if you are using any standard test.
 
  
::<span class="exam">(a) (6 points) &nbsp;&nbsp;&nbsp;&nbsp; <math>{\displaystyle \sum_{n=1}^{\infty}}\,\frac{n!}{(3n+1)!}.</math>
+
<span class="exam">Give reasons and clearly state if you are using any standard test.
 +
 
 +
<span class="exam">(a) &nbsp;<math>{\displaystyle \sum_{n=1}^{\infty}}\,\frac{n!}{(3n+1)!}</math>
 
<br>
 
<br>
  
::<span class="exam">(b) (6 points) &nbsp;&nbsp;&nbsp;&nbsp; <math>{\displaystyle \sum_{n=2}^{\infty}}\,\frac{\sqrt{n}}{n^{2}-3}.</math>
+
<span class="exam">(b) &nbsp;<math>{\displaystyle \sum_{n=2}^{\infty}}\,\frac{\sqrt{n}}{n^{2}-3}</math>
 
+
<hr>
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009C Sample Midterm 3, Problem 3 Solution|'''<u>Solution</u>''']]
! Foundations: &nbsp;
 
|-
 
|Most of the time, if there are factorials in the terms of a series, you would use the
 
|-
 
|'''Ratio Test.''' Let <math style="vertical-align: -98%">\sum_{k=1}^{\infty} a_{k}</math> be a series. Then:
 
|-
 
|
 
:*If <math style="vertical-align: -84%">\lim_{k\rightarrow\infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L<1</math>, the series is absolutely convergent (and therefore convergent).
 
|-
 
|
 
:*If <math style="vertical-align: -84%">\lim_{k\rightarrow\infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L>1</math> or <math style="vertical-align: -83%">\lim_{k\rightarrow\infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L=\infty</math>, the series is divergent.
 
|-
 
|
 
:*If <math style="vertical-align: -84%">\lim_{k\rightarrow\infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L=1</math>, the Ratio Test is inconclusive.
 
|-
 
|This works well, as factorials cancel out many terms.  For example,
 
|-
 
|
 
::<math>\frac{(n+1)!}{n!}\,=\,n+1.</math>
 
|-
 
|On the other hand, something built mainly out of powers of <math style="vertical-align: 0%">n</math> may work well with the
 
|-
 
|'''Limit Comparison Test.''' Suppose <math style="vertical-align: -100%">\sum_{k=1}^{\infty} a_{k}</math> and <math style="vertical-align: -100%">\sum_{k=1}^{\infty} b_{k}</math> are series with positive terms. If <math style="vertical-align: -75%">\lim_{k\rightarrow\infty}\frac{a_{k}}{b_{k}}=c</math> where <math style="vertical-align: -5%">0<c<\infty</math>, then either both series converge, or both series diverge.
 
|-
 
|In the case of a series built mainly out of powers, you would choose to compare it to a ''p''-series.
 
|}
 
 
 
&nbsp;'''Solution:'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(a): &nbsp;
 
|-
 
|As mentioned in Foundations, we should use the ratio test.  Note that
 
|-
 
|
 
::<math style="vertical-align: 0%">\begin{array}{rcl}
 
\displaystyle {\left|\frac{a_{n+1}}{a_{n}}\right|} & = & \left|\frac{\frac{(n+1)!}{(3(n+1)+1)!}}{\frac{n!}{(3n+1)!}}\right|\\
 
\\
 
& = & \displaystyle {\frac{(n+1)!}{n!}\cdot\frac{(3n+1)!}{(3n+4)!}}\\
 
\\
 
& = & \displaystyle {\frac{n+1}{(3n+2)(3n+3)(3n+4)}}.
 
\end{array}</math>
 
|-
 
|Thus,
 
|-
 
|
 
::<math style="vertical-align: 0%">\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_{n}}\right|\ =\ 0\ <\ 1,</math>
 
|-
 
|so by the ratio test the series converges.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009C Sample Midterm 3, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
!(b): &nbsp;
 
|-
 
|Here, we can use the limit comparison test. Let <math style="vertical-align: -62%">a_{n}=\frac{\sqrt{n}}{n^{2}-3}</math>, and let <math style="vertical-align: -62%">b_{n}=\frac{1}{n^{3/2}}.</math> Notice that the terms of <math style="vertical-align: -10%">a_{n}</math> are all positive, and
 
|-
 
|
 
::<math style="vertical-align: 0%">\begin{array}{rcl}
 
\displaystyle {\lim_{n\rightarrow\infty}\frac{a_{n}}{b_{n}}} & = & \displaystyle {\lim_{n\rightarrow\infty}\frac{\frac{\sqrt{n}}{n^{2}-3}}{\frac{1}{n^{3/2}}}}\\
 
\\
 
& = & \displaystyle {\lim_{n\rightarrow\infty}\frac{n^{2}}{n^{2}-3}}\\
 
\\
 
& = & 1\,\,<\,\, \infty.
 
\end{array}</math>  
 
  
Since <math style="vertical-align: -90%">\sum_{n=2}^{\infty}\frac{1}{n^{3/2}}</math> &thinsp;is a p-series with <math style="vertical-align: -20%">p>1,</math>
 
it is convergent. By the limit comparison test, <math style="vertical-align: -90%">\sum_{n=2}^{\infty}\frac{\sqrt{n}}{n^{2}-3}</math>
 
&thinsp;is convergent.
 
|}
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|Both series are convergent.
 
  
|}
 
 
[[009C_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 08:45, 28 November 2017

Test if each the following series converges or diverges.

Give reasons and clearly state if you are using any standard test.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam