Difference between revisions of "022 Exam 1 Sample A, Problem 5"
Jump to navigation
Jump to search
m |
m |
||
(2 intermediate revisions by the same user not shown) | |||
Line 13: | Line 13: | ||
! Foundations: | ! Foundations: | ||
|- | |- | ||
− | |Recall that the demand function, <math style="vertical-align: -25%">p(x)</math>, relates the price per unit <math style="vertical-align: -17%">p</math> to the number of units sold, <math style="vertical-align: 0%">x</math>. | + | |Recall that the '''demand function''', <math style="vertical-align: -25%">p(x)</math>, relates the price per unit <math style="vertical-align: -17%">p</math> to the number of units sold, <math style="vertical-align: 0%">x</math>. |
Moreover, we have several important important functions: | Moreover, we have several important important functions: | ||
|- | |- | ||
| | | | ||
− | *<math style="vertical-align: -20%">C(x)</math>, the total cost to produce <math style="vertical-align: 0%">x</math> units;<br> | + | *<math style="vertical-align: -20%">C(x)</math>, the '''total cost''' to produce <math style="vertical-align: 0%">x</math> units;<br> |
− | *<math style="vertical-align: -20%">R(x)</math>, the total revenue (or gross receipts) from producing <math style="vertical-align: 0%">x</math> units;<br> | + | *<math style="vertical-align: -20%">R(x)</math>, the '''total revenue''' (or gross receipts) from producing <math style="vertical-align: 0%">x</math> units;<br> |
− | *<math style="vertical-align: -20%">P(x)</math>, the total profit from producing <math style="vertical-align: 0%">x</math> units.<br> | + | *<math style="vertical-align: -20%">P(x)</math>, the '''total profit''' from producing <math style="vertical-align: 0%">x</math> units.<br> |
|- | |- | ||
|In particular, we have the relations | |In particular, we have the relations | ||
Line 31: | Line 31: | ||
::<math>R(x)=x\cdot p(x).</math> | ::<math>R(x)=x\cdot p(x).</math> | ||
|- | |- | ||
− | |Finally, marginal profit at <math style="vertical-align: -20%">x_0</math> units is defined to be the effective | + | |Finally, the '''marginal profit''' at <math style="vertical-align: -20%">x_0</math> units is defined to be the effective profit of the next unit produced, and is precisely <math style="vertical-align: -22%">P'(x_0)</math>. Similarly, the '''marginal revenue''' or '''marginal cost''' would be <math style="vertical-align: -22%">R'(x_0)</math> or <math style="vertical-align: -22%">C'(x_0)</math>, respectively. |
|} | |} | ||
Line 51: | Line 51: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Step | + | !Step 2: |
|- | |- | ||
− | |'''Find the Marginal Revenue and Profit:''' The marginal revenue is | + | |'''Find the Marginal Revenue and Profit:''' The equation for marginal revenue is |
|- | |- | ||
| | | | ||
::<math>R'(x)\,\,=\,\,\left(200 \sqrt{x}\right) '\,\,=\,\,200\cdot \frac{1}{2}\cdot\frac{1}{\sqrt{x}}\,\,=\,\,\frac{100}{\sqrt{x}}, </math> | ::<math>R'(x)\,\,=\,\,\left(200 \sqrt{x}\right) '\,\,=\,\,200\cdot \frac{1}{2}\cdot\frac{1}{\sqrt{x}}\,\,=\,\,\frac{100}{\sqrt{x}}, </math> | ||
|- | |- | ||
− | |while the marginal profit is | + | |while the equation for marginal profit is |
|- | |- | ||
| | | | ||
− | ::<math>P'(x)\,\,=\,\,R'(x)-C'(x)\,\,=\,\,\frac{100}{\sqrt{x}}-( | + | ::<math>P'(x)\,\,=\,\,R'(x)-C'(x)\,\,=\,\,\frac{100}{\sqrt{x}}-(15+6x).</math> |
|- | |- | ||
− | |At <math style="vertical-align: -3%">x=4</math>, we find | + | |At <math style="vertical-align: -3%">x=4</math>, we find the marginal revenue is |
|- | |- | ||
| | | | ||
Line 71: | Line 71: | ||
|- | |- | ||
| | | | ||
− | ::<math>P'(4)\,\,=\,\,\frac{100}{\sqrt{4}}-( | + | ::<math>P'(4)\,\,=\,\,\frac{100}{\sqrt{4}}-(15+6(4))\,\,=\,\,50-39\,\,=\,\,11.</math> |
|- | |- | ||
− | |Thus, it is | + | |Thus, it is profitable to produce another item. |
|} | |} | ||
Line 80: | Line 80: | ||
|- | |- | ||
| | | | ||
− | ::<math>R'(4)\,\,=\,\,50;\qquad P'(4)\,\,=\,\, | + | ::<math>R'(4)\,\,=\,\,50;\qquad P'(4)\,\,=\,\,11. </math> |
|- | |- | ||
− | |Thus, it is | + | |Thus, it is profitable to produce another item. |
|} | |} | ||
[[022_Exam_1_Sample_A|'''<u>Return to Sample Exam</u>''']] | [[022_Exam_1_Sample_A|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 11:39, 20 April 2015
Find the marginal revenue and marginal profit at , given the demand function
and the cost function
Should the firm produce one more item under these conditions? Justify your answer.
Foundations: |
---|
Recall that the demand function, , relates the price per unit to the number of units sold, .
Moreover, we have several important important functions: |
|
In particular, we have the relations |
|
and |
|
Finally, the marginal profit at units is defined to be the effective profit of the next unit produced, and is precisely . Similarly, the marginal revenue or marginal cost would be or , respectively. |
Solution:
Step 1: |
---|
Find the Important Functions: We have |
|
From this, |
|
Step 2: |
---|
Find the Marginal Revenue and Profit: The equation for marginal revenue is |
|
while the equation for marginal profit is |
|
At , we find the marginal revenue is |
|
On the other hand, marginal profit is |
|
Thus, it is profitable to produce another item. |
Final Answer: |
---|
|
Thus, it is profitable to produce another item. |