Difference between revisions of "022 Exam 1 Sample A, Problem 8"
Jump to navigation
Jump to search
(Created page with "<span style="font-size:135%">8. Find the derivative of the function <math style="vertical-align: -43%">f(x)=\frac{(3x-1)^{2}}{x^{3}-7}</math>. You do not need to simplify your...") |
m |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span style="font-size:135%">8. Find the derivative of the function <math style="vertical-align: -43%">f(x)=\frac{(3x-1)^{2}}{x^{3}-7}</math>. | + | <span style="font-size:135%"><font face=Times Roman>8. Find the derivative of the function <math style="vertical-align: -43%">f(x)=\frac{(3x-1)^{2}}{x^{3}-7}</math>. |
− | You do not need to simplify your answer. | + | You do not need to simplify your answer.</font face=Times Roman> |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 19: | Line 19: | ||
|} | |} | ||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |Note that we need to use chain rule to find the derivative of <math style="vertical-align: -25%;">\left(3x-1\right)^2</math>. Then we find | ||
+ | |- | ||
+ | |<table> | ||
+ | <tr style="vertical-align: middle"> | ||
+ | <td> <math style="vertical-align: -70%">f'(x)</math> </td> | ||
+ | <td><math>=\,\,\frac{\left[\left(3x-1\right)^{2}\right]'\cdot(x^{3}-7) \,\,-\,\, \left(3x-1\right)^{2}\cdot(x^{3}-7)'}{(x^{3}-7)^{2}}</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td></td> | ||
+ | <td><math>=\,\,\frac{\left[2\left(3x-1\right)\cdot3\right]\cdot(x^{3}-7) \,\,-\,\, \left(3x-1\right)^{2}\cdot3x^{2}}{(x^{3}-7)^{2}}.</math></td> | ||
+ | </table> | ||
+ | |} | ||
− | |||
− | + | [[022_Exam_1_Sample_A|'''<u>Return to Sample Exam</u>''']] | |
− | |||
− |
Latest revision as of 15:34, 2 April 2015
8. Find the derivative of the function . You do not need to simplify your answer.
Foundations: |
---|
This problem involves some more advanced rules of differentiation. In particular, it requires |
The Chain Rule: If and are differentiable functions, then |
The Quotient Rule: If and are differentiable functions and , then |
Solution: | ||||
---|---|---|---|---|
Note that we need to use chain rule to find the derivative of . Then we find | ||||