Difference between revisions of "Math 22 Lagrange Multipliers"

From Math Wiki
Jump to navigation Jump to search
(Created page with " '''Return to Topics Page''' '''This page were made by Tri Phan'''")
 
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
==Method of Lagrange Multipliers==
 +
  If <math>f(x,y)</math> has a maximum or minimum subject to the constraint <math>g(x,y)=0</math>, then it will occur at one of the critical numbers of the function  defined by
 +
  <math>F(x,y,\lambda)=f(x,y)-\lambda g(x,y)</math>.
 +
 
 +
  In this section, we need to set up the system of equations:
 +
 
 +
  <math>F_x(x,y,\lambda)=0</math>
 +
  <math>F_y(x,y,\lambda)=0</math>
 +
  <math>F_{\lambda}(x,y,\lambda)=0</math>
  
 +
'''Example:''' Set up the Lagrange Multipliers:
  
 +
'''1)''' Maximum: <math>f(x,y)=xy</math> and Constraint <math>x+y-14=0</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|So, <math>F(x,y,\lambda)=f(x,y)-\lambda g(x,y)=xy-\lambda (x+y-14)=xy-\lambda x -\lambda y+14\lambda</math>
 +
|-
 +
|<math>F_x(x,y,\lambda)=y-\lambda</math>
 +
|-
 +
|<math>F_y(x,y,\lambda)=x-\lambda</math>
 +
|-
 +
|<math>F_{\lambda}(x,y,\lambda)=-x-y+14</math>
 +
|}
 +
 +
'''2)''' Maximum: <math>f(x,y)=xy</math> and Constraint <math>x+3y-6=0</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|So, <math>F(x,y,\lambda)=f(x,y)-\lambda g(x,y)=xy-\lambda (x+3y-6)=xy-\lambda x -3\lambda y+6\lambda</math>
 +
|-
 +
|<math>F_x(x,y,\lambda)=y-\lambda</math>
 +
|-
 +
|<math>F_y(x,y,\lambda)=x-3\lambda</math>
 +
|-
 +
|<math>F_{\lambda}(x,y,\lambda)=-x-3y+6</math>
 +
|}
  
  

Latest revision as of 08:57, 18 August 2020

Method of Lagrange Multipliers

 If  has a maximum or minimum subject to the constraint , then it will occur at one of the critical numbers of the function  defined by
 .
 
 In this section, we need to set up the system of equations:
 
 
 
 

Example: Set up the Lagrange Multipliers:

1) Maximum: and Constraint

Solution:  
So,

2) Maximum: and Constraint

Solution:  
So,


Return to Topics Page

This page were made by Tri Phan