Difference between revisions of "Math 22 Partial Derivatives"
(→Note) |
|||
| (5 intermediate revisions by the same user not shown) | |||
| Line 37: | Line 37: | ||
==Higher-Order Partial Derivatives== | ==Higher-Order Partial Derivatives== | ||
| − | 1. <math>\frac{\partial}{\partial x}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial x^2}=\f_{ | + | 1. <math>\frac{\partial}{\partial x}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial x^2}=f_{xx}</math> |
| + | |||
| + | 2. <math>\frac{\partial}{\partial y}(\frac{\partial f}{\partial y})=\frac{\partial^2 f}{\partial y^2}=f_{yy}</math> | ||
| + | |||
| + | 3. <math>\frac{\partial}{\partial y}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial y\partial x}=f_{xy}</math> | ||
| + | |||
| + | 4. <math>\frac{\partial}{\partial x}(\frac{\partial f}{\partial y})=\frac{\partial^2 f}{\partial x\partial y}=f_{yx}</math> | ||
| + | |||
| + | '''1)''' Find <math>f_{xy}</math>, given that <math>f(x,y)=2x^2-4xy</math>, | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |<math>f_x=4x-4y</math> | ||
| + | |- | ||
| + | |Then, <math>f_{xy}=-4</math> | ||
| + | |} | ||
| + | |||
| + | '''2)''' Find <math>f_{yx}</math>, given that <math>z=f(x,y)=3xy^2-2y+5x^2y^2</math>, | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |<math>f_y=6xy-2+10x^2y</math> | ||
| + | |- | ||
| + | |Then, <math>f_{yx}=6y+20xy</math> | ||
| + | |} | ||
| + | |||
| + | |||
| + | |||
| + | |||
[[Math_22| '''Return to Topics Page''']] | [[Math_22| '''Return to Topics Page''']] | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' | ||
Latest revision as of 16:21, 3 September 2020
Partial Derivatives of a Function of Two Variables
If Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle z=f(x,y)}
, then the first partial derivatives of with respect to and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y}
are the functions Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}}
and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}}
, defined as shown.
We can denote Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}}
as and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial y}}}
as
Example: Find Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}} and of:
1)
| Solution: |
|---|
2)
| Solution: |
|---|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}=2xy^{3}} |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial y}}=3x^{2}y^{2}} |
3) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle z=f(x,y)=x^{2}e^{x^{2}y}}
| Solution: |
|---|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}=2xe^{x^{2}y}+x^{2}e^{x^{2}y}2xy} (product rule +chain rule) |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial y}}=x^{2}e^{x^{2}y}(x^{2})=x^{4}e^{x^{2}y}} |
Higher-Order Partial Derivatives
1. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial x}}({\frac {\partial f}{\partial x}})={\frac {\partial ^{2}f}{\partial x^{2}}}=f_{xx}}
2. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial y}}({\frac {\partial f}{\partial y}})={\frac {\partial ^{2}f}{\partial y^{2}}}=f_{yy}}
3.
4. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial x}}({\frac {\partial f}{\partial y}})={\frac {\partial ^{2}f}{\partial x\partial y}}=f_{yx}}
1) Find Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{xy}} , given that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(x,y)=2x^{2}-4xy} ,
| Solution: |
|---|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{x}=4x-4y} |
| Then, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{xy}=-4} |
2) Find Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{yx}} , given that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle z=f(x,y)=3xy^{2}-2y+5x^{2}y^{2}} ,
| Solution: |
|---|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{y}=6xy-2+10x^{2}y} |
| Then, |
This page were made by Tri Phan