Difference between revisions of "Math 22 Partial Derivatives"

From Math Wiki
Jump to navigation Jump to search
 
(5 intermediate revisions by the same user not shown)
Line 37: Line 37:
  
 
==Higher-Order Partial Derivatives==
 
==Higher-Order Partial Derivatives==
1. <math>\frac{\partial}{\partial x}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial x^2}=\f_{xx}</math>
+
1. <math>\frac{\partial}{\partial x}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial x^2}=f_{xx}</math>
 +
 
 +
2. <math>\frac{\partial}{\partial y}(\frac{\partial f}{\partial y})=\frac{\partial^2 f}{\partial y^2}=f_{yy}</math>
 +
 
 +
3. <math>\frac{\partial}{\partial y}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial y\partial x}=f_{xy}</math>
 +
 
 +
4. <math>\frac{\partial}{\partial x}(\frac{\partial f}{\partial y})=\frac{\partial^2 f}{\partial x\partial y}=f_{yx}</math>
 +
 
 +
'''1)''' Find <math>f_{xy}</math>, given that <math>f(x,y)=2x^2-4xy</math>,
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>f_x=4x-4y</math>
 +
|-
 +
|Then, <math>f_{xy}=-4</math>
 +
|}
 +
 
 +
'''2)''' Find <math>f_{yx}</math>, given that <math>z=f(x,y)=3xy^2-2y+5x^2y^2</math>,
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>f_y=6xy-2+10x^2y</math>
 +
|-
 +
|Then, <math>f_{yx}=6y+20xy</math>
 +
|}
 +
 
 +
 
 +
 
 +
 
 
[[Math_22| '''Return to Topics Page''']]
 
[[Math_22| '''Return to Topics Page''']]
  
 
'''This page were made by [[Contributors|Tri Phan]]'''
 
'''This page were made by [[Contributors|Tri Phan]]'''

Latest revision as of 16:21, 3 September 2020

Partial Derivatives of a Function of Two Variables

 If Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle z=f(x,y)}
, then the first partial derivatives of  with respect to  and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y}
 are the functions Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}}
 and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}}
, defined as shown.
 
 
 
 
 
 We can denote Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}}
 as  and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial y}}}
 as 

Example: Find Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}} and of:

1)

Solution:  

2)

Solution:  
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}=2xy^{3}}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial y}}=3x^{2}y^{2}}

3) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle z=f(x,y)=x^{2}e^{x^{2}y}}

Solution:  
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}=2xe^{x^{2}y}+x^{2}e^{x^{2}y}2xy} (product rule +chain rule)
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial y}}=x^{2}e^{x^{2}y}(x^{2})=x^{4}e^{x^{2}y}}

Higher-Order Partial Derivatives

1. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial x}}({\frac {\partial f}{\partial x}})={\frac {\partial ^{2}f}{\partial x^{2}}}=f_{xx}}

2. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial y}}({\frac {\partial f}{\partial y}})={\frac {\partial ^{2}f}{\partial y^{2}}}=f_{yy}}

3.

4. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial x}}({\frac {\partial f}{\partial y}})={\frac {\partial ^{2}f}{\partial x\partial y}}=f_{yx}}

1) Find Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{xy}} , given that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(x,y)=2x^{2}-4xy} ,

Solution:  
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{x}=4x-4y}
Then, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{xy}=-4}

2) Find Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{yx}} , given that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle z=f(x,y)=3xy^{2}-2y+5x^{2}y^{2}} ,

Solution:  
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{y}=6xy-2+10x^{2}y}
Then,



Return to Topics Page

This page were made by Tri Phan