Difference between revisions of "Math 22 The Three-Dimensional Coordinate System"

From Math Wiki
Jump to navigation Jump to search
(Created page with " '''Return to Topics Page''' '''This page were made by Tri Phan'''")
 
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
==The Three-Dimensional Coordinate System==
 +
[[File:3d_spaces.png]]
 +
==The Distance and Midpoint Formulas==
 +
  The distance <math>d</math> between the points <math>(x_1,x_2,x_3)</math> and <math>(x_2,y_2,z_2)</math> is
 +
 
 +
  <math>d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}</math>
  
 +
'''Exercises 1''' Find the distance between two points
  
 +
'''1)''' <math>(4,2,3)</math> and <math>(1,2,0)</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}=\sqrt{(1-4)^2+(2-2)^2+(0-3)^2}=\sqrt{18}</math>
 +
|-
 +
|}
 +
 +
'''2)''' <math>(1,2,4)</math> and <math>(2,5,1)</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>d=\sqrt{(2-1)^2+(5-2)^2+(1-4)^2}=\sqrt{19}</math>
 +
|-
 +
|}
 +
 +
==Midpoint Formula in Space==
 +
  The midpoint of the line segment joining the points <math>(x_1,x_2,x_3)</math> and <math>(x_2,y_2,z_2)</math> is
 +
 
 +
  <math>\text{Midpoint}=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2},\frac{z_1+z_2}{2})</math>
 +
 +
'''Exercises 2''' Find the midpoint of two points below:
 +
 +
'''1)''' <math>(4,2,3)</math> and <math>(1,2,0)</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>\text{Midpoint}=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2},\frac{z_1+z_2}{2})=(\frac{4+1}{2},\frac{2+2}{2},\frac{3+0}{2})=(\frac{5}{2},2,\frac{3}{2})</math>
 +
|-
 +
|}
 +
 +
'''2)''' <math>(1,2,4)</math> and <math>(2,5,1)</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>\text{Midpoint}=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2},\frac{z_1+z_2}{2})=(\frac{1+2}{2},\frac{2+5}{2},\frac{4+1}{2})=(\frac{3}{2},\frac{7}{2},\frac{5}{2})</math>
 +
|-
 +
|}
 +
==Standard Equation of a Sphere==
 +
  The standard equation of a sphere with center at <math>(h,k,j)</math> and radius <math>r</math> is:
 +
 
 +
  <math>(x-h)^2+(y-k)^2+(z-j)^2=r^2</math>
 +
 +
'''Exercises 3''' Find the equation of the sphere that has:
 +
 +
'''1)''' Center: <math>(1,2,0)</math> and radius: <math>5</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>(x-h)^2+(y-k)^2+(z-j)^2=r^2</math>
 +
|-
 +
|So, <math>(x-1)^2+(y-2)^2+(z-0)^2=5^2</math>
 +
|-
 +
|Therefore, <math>(x-1)^2+(y-2)^2+z^2=25</math>
 +
|}
 +
 +
'''2)''' Center: <math>(-1,2,4)</math> and radius: <math>2</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>(x-h)^2+(y-k)^2+(z-j)^2=r^2</math>
 +
|-
 +
|So, <math>(x-(-1))^2+(y-2)^2+(z-4)^2=2^2</math>
 +
|-
 +
|Therefore, <math>(x+1)^2+(y-2)^2+(z-4)^2=4</math>
 +
|}
  
  

Latest revision as of 06:43, 18 August 2020

The Three-Dimensional Coordinate System

3d spaces.png

The Distance and Midpoint Formulas

 The distance  between the points  and  is
 
 

Exercises 1 Find the distance between two points

1) and

Solution:  

2) and

Solution:  

Midpoint Formula in Space

 The midpoint of the line segment joining the points  and  is
 
 

Exercises 2 Find the midpoint of two points below:

1) and

Solution:  

2) and

Solution:  

Standard Equation of a Sphere

 The standard equation of a sphere with center at  and radius  is:
 
 

Exercises 3 Find the equation of the sphere that has:

1) Center: and radius:

Solution:  
So,
Therefore,

2) Center: and radius:

Solution:  
So,
Therefore,


Return to Topics Page

This page were made by Tri Phan