Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"
Jump to navigation
Jump to search
Line 69: | Line 69: | ||
|Let <math>u=3x+5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{3}</math> | |Let <math>u=3x+5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{3}</math> | ||
|- | |- | ||
− | |Consider <math>\int \frac{3}{3x+5}dx=\int\frac{3}{u}\frac{du}{3}=\int\frac{3}{3}\frac{1}{u}du=\int\frac{1}{u}du=\ln|u|+C= | + | |Consider <math>\int \frac{3}{3x+5}dx=\int\frac{3}{u}\frac{du}{3}=\int\frac{3}{3}\frac{1}{u}du=\int\frac{1}{u}du=\ln|u|+C=\ln |3x+5|+C</math> |
|} | |} | ||
Latest revision as of 08:08, 15 August 2020
Integrals of Exponential Functions
Let be a differentiable function of , then
Exercises 1 Find the indefinite integral
1)
Solution: |
---|
2)
Solution: |
---|
Let , so , so |
Consider |
3)
Solution: |
---|
4)
Solution: |
---|
Let , so , so |
Consider |
Using the Log Rule
Let be a differentiable function of , then
Exercises 2 Find the indefinite integral
1)
Solution: |
---|
2)
Solution: |
---|
Let , so , so |
Consider |
3)
Solution: |
---|
Let , so , so |
Consider |
This page were made by Tri Phan