Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"

From Math Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 60: Line 60:
 
|Let <math>u=x^2</math>, so <math>du=2xdx</math>, so <math>dx=\frac{du}{2x}</math>
 
|Let <math>u=x^2</math>, so <math>du=2xdx</math>, so <math>dx=\frac{du}{2x}</math>
 
|-
 
|-
|Consider <math>\int \frac{3x}{x^2}dx=\int\frac{3x}{u}\frac{du}{2x}=\int\frac{3}{2}\frac{1}{u}du=\frac{3}{2}\frac{1}{u}du=\frac{3}{2}\ln|u|+C=\frac{3}{2}\ln |x^2|+C</math>
+
|Consider <math>\int \frac{3x}{x^2}dx=\int\frac{3x}{u}\frac{du}{2x}=\int\frac{3}{2}\frac{1}{u}du=\frac{3}{2}\int\frac{1}{u}du=\frac{3}{2}\ln|u|+C=\frac{3}{2}\ln |x^2|+C</math>
 
|}
 
|}
  
'''3)''' <math>\int (3e^x-6x)dx</math>
+
'''3)''' <math>\int\frac{3}{3x+5}dx</math>
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 
|-
 
|-
|<math>\int (3e^x-6x)dx=\int (3e^x)dx -\int 6xdx=3e^x-3x^2+C</math>
+
|Let <math>u=3x+5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{3}</math>
|}
 
 
 
'''4)''' <math>\int e^{2x-5}dx</math>
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
|-
 
|Let <math>u=2x-5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{2}</math>
 
 
|-
 
|-
|Consider <math>\int e^{2x-5}dx=\int e^u \frac{du}{2}=\frac{1}{2}\int e^u du=\frac{1}{2}e^u +C=\frac{1}{2}e^{2x-5}+C</math>
+
|Consider <math>\int \frac{3}{3x+5}dx=\int\frac{3}{u}\frac{du}{3}=\int\frac{3}{3}\frac{1}{u}du=\int\frac{1}{u}du=\ln|u|+C=\ln |3x+5|+C</math>
 
|}
 
|}
  

Latest revision as of 08:08, 15 August 2020

Integrals of Exponential Functions

 Let  be a differentiable function of , then
 
 
 

Exercises 1 Find the indefinite integral

1)

Solution:  

2)

Solution:  
Let , so , so
Consider

3)

Solution:  

4)

Solution:  
Let , so , so
Consider

Using the Log Rule

 Let  be a differentiable function of , then
 
 
 

Exercises 2 Find the indefinite integral

1)

Solution:  

2)

Solution:  
Let , so , so
Consider

3)

Solution:  
Let , so , so
Consider


Return to Topics Page

This page were made by Tri Phan