Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"
Jump to navigation
Jump to search
| (9 intermediate revisions by the same user not shown) | |||
| Line 4: | Line 4: | ||
<math>\int e^u \frac{du}{dx}dx=\int e^u du=e^u+C</math> | <math>\int e^u \frac{du}{dx}dx=\int e^u du=e^u+C</math> | ||
| + | |||
| + | '''Exercises 1''' Find the indefinite integral | ||
| + | |||
| + | '''1)''' <math>\int 3e^xdx</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |<math>\int 3e^xdx=3\int e^x=3e^x +C</math> | ||
| + | |} | ||
| + | |||
| + | '''2)''' <math>\int 3e^{3x}dx</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |Let <math>u=3x</math>, so <math>du=3dx</math>, so <math>dx=\frac{du}{3}</math> | ||
| + | |- | ||
| + | |Consider <math>\int 3e^{3x}dx=\int 3e^u \frac{du}{3}=\int e^u du=e^u+C=e^{3x}+C</math> | ||
| + | |} | ||
| + | |||
| + | '''3)''' <math>\int (3e^x-6x)dx</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |<math>\int (3e^x-6x)dx=\int (3e^x)dx -\int 6xdx=3e^x-3x^2+C</math> | ||
| + | |} | ||
| + | |||
| + | '''4)''' <math>\int e^{2x-5}dx</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |Let <math>u=2x-5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{2}</math> | ||
| + | |- | ||
| + | |Consider <math>\int e^{2x-5}dx=\int e^u \frac{du}{2}=\frac{1}{2}\int e^u du=\frac{1}{2}e^u +C=\frac{1}{2}e^{2x-5}+C</math> | ||
| + | |} | ||
| + | |||
| + | ==Using the Log Rule== | ||
| + | Let <math>u</math> be a differentiable function of <math>x</math>, then | ||
| + | <math>\int\frac{1}{x}=\ln|x|+C</math> | ||
| + | |||
| + | <math>\int\frac{1}{u}\frac{du}{dx}dx=\int\frac{1}{u}du=\ln|u|+C</math> | ||
| + | |||
| + | '''Exercises 2''' Find the indefinite integral | ||
| + | |||
| + | '''1)''' <math>\int \frac{3}{x}dx</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |<math>\int \frac{3}{x}dx=3\int \frac{1}{x}=3\ln |x| +C</math> | ||
| + | |} | ||
| + | |||
| + | '''2)''' <math>\int \frac{3x}{x^2}dx</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |Let <math>u=x^2</math>, so <math>du=2xdx</math>, so <math>dx=\frac{du}{2x}</math> | ||
| + | |- | ||
| + | |Consider <math>\int \frac{3x}{x^2}dx=\int\frac{3x}{u}\frac{du}{2x}=\int\frac{3}{2}\frac{1}{u}du=\frac{3}{2}\int\frac{1}{u}du=\frac{3}{2}\ln|u|+C=\frac{3}{2}\ln |x^2|+C</math> | ||
| + | |} | ||
| + | |||
| + | '''3)''' <math>\int\frac{3}{3x+5}dx</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |Let <math>u=3x+5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{3}</math> | ||
| + | |- | ||
| + | |Consider <math>\int \frac{3}{3x+5}dx=\int\frac{3}{u}\frac{du}{3}=\int\frac{3}{3}\frac{1}{u}du=\int\frac{1}{u}du=\ln|u|+C=\ln |3x+5|+C</math> | ||
| + | |} | ||
| + | |||
[[Math_22| '''Return to Topics Page''']] | [[Math_22| '''Return to Topics Page''']] | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' | ||
Latest revision as of 08:08, 15 August 2020
Integrals of Exponential Functions
Let be a differentiable function of , then
Exercises 1 Find the indefinite integral
1)
| Solution: |
|---|
2)
| Solution: |
|---|
| Let , so , so |
| Consider |
3)
| Solution: |
|---|
4)
| Solution: |
|---|
| Let , so , so |
| Consider |
Using the Log Rule
Let be a differentiable function of , then
Exercises 2 Find the indefinite integral
1)
| Solution: |
|---|
2)
| Solution: |
|---|
| Let , so , so |
| Consider |
3)
| Solution: |
|---|
| Let , so , so |
| Consider |
This page were made by Tri Phan