Difference between revisions of "Math 22 Antiderivatives and Indefinite Integrals"
Jump to navigation
Jump to search
(4 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
The antidifferentiation process is also called integration and is denoted by <math>\int</math> (integral sign). | The antidifferentiation process is also called integration and is denoted by <math>\int</math> (integral sign). | ||
<math>\int f(x)dx</math> is the indefinite integral of <math>f(x)</math> | <math>\int f(x)dx</math> is the indefinite integral of <math>f(x)</math> | ||
+ | |||
+ | If <math>F'(x)=f(x)</math> for all <math>x</math>, we can write: | ||
+ | <math>\int f(x)dx=F(x)+C</math> for <math>C</math> is a constant. | ||
+ | |||
+ | ==Basic Integration Rules== | ||
+ | <math>1.\int kdx=kx+C</math> for <math>k</math> is a constant. | ||
+ | |||
+ | <math>2.\int kf(x)=k\int f(x)dx</math> | ||
+ | |||
+ | <math>3.\int [f(x)+g(x)]dx=\int f(x)dx+\int g(x)dx</math> | ||
+ | |||
+ | <math>4.\int [f(x)-g(x)]dx=\int f(x)dx-\int g(x)dx</math> | ||
+ | |||
+ | <math>5.\int x^n dx=\frac{x^{n+1}}{n+1}+C</math> for <math>n\ne -1</math> | ||
+ | |||
+ | '''Exercises 1''' Find the indefinite integral | ||
+ | |||
+ | '''1)''' <math>\int 7dr</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math>\int 7dr=7r+C</math> | ||
+ | |} | ||
+ | |||
+ | '''2)''' <math>\int -4dx</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math>\int -4dx=-4x+C</math> | ||
+ | |} | ||
+ | |||
+ | '''3)''' <math>\int 7x^2dx</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math>\int 7x^2dx=7\int x^2dx=7\frac{x^{2+1}}{2+1}+C=\frac{7}{3}x^3+C</math> | ||
+ | |} | ||
+ | |||
+ | '''4)''' <math>\int 5x^{-3}dx</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math>\int 5x^{-3}dx=5\int x^{-3}dx=5\frac{x^{-3+1}}{-3+1}+C=\frac{-5}{2}x^{-2}+C</math> | ||
+ | |} | ||
+ | |||
+ | '''Exercises 2''' Solve the initial value problems, given: | ||
+ | |||
+ | '''5)''' <math>f'(x)=\frac{1}{5}x-2</math> and <math>f(10)=-10</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |Notice <math>f(x)=\int f'(x)dx=\int (\frac{1}{5}x-2)dx=\frac{1}{5}\frac{x^2}{2}-2x+C=\frac{1}{10}x^2-2x+C</math> | ||
+ | |- | ||
+ | |So, <math>f(x)=\frac{1}{10}x^2-2x+C</math> | ||
+ | |- | ||
+ | |we are given <math>f(10)=-10</math>, so <math>\frac{1}{10}(10)^2-2(10)+C=10</math> | ||
+ | |- | ||
+ | |Hence, <math>C=20</math> | ||
+ | |- | ||
+ | |Therefore, <math>f(x)=\frac{1}{10}x^2-2x+20</math> | ||
+ | |} | ||
+ | |||
+ | '''6)''' <math>f'(x)=3x^2+4</math> and <math>f(-1)=-6</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |Notice <math>f(x)=\int f'(x)dx=\int (3x^2+4)dx=x^3+4x+C</math> | ||
+ | |- | ||
+ | |So, <math>f(x)=x^3+4x+C</math> | ||
+ | |- | ||
+ | |we are given <math>f(-1)=-6</math>, so <math>(-1)^3+4(-1)+C=-6</math> | ||
+ | |- | ||
+ | |Hence, <math>C=-1</math> | ||
+ | |- | ||
+ | |Therefore, <math>f(x)=x^3+4x-1</math> | ||
+ | |} | ||
Latest revision as of 07:33, 12 August 2020
Antiderivatives
A function is an antiderivative of a function when for every in the domain of , it follows that
The antidifferentiation process is also called integration and is denoted by (integral sign). is the indefinite integral of
If for all , we can write: for is a constant.
Basic Integration Rules
for is a constant.
for
Exercises 1 Find the indefinite integral
1)
Solution: |
---|
2)
Solution: |
---|
3)
Solution: |
---|
4)
Solution: |
---|
Exercises 2 Solve the initial value problems, given:
5) and
Solution: |
---|
Notice |
So, |
we are given , so |
Hence, |
Therefore, |
6) and
Solution: |
---|
Notice |
So, |
we are given , so |
Hence, |
Therefore, |
This page were made by Tri Phan