Difference between revisions of "Math 22 Derivatives of Logarithmic Functions"
Jump to navigation
Jump to search
(Created page with " '''Return to Topics Page''' '''This page were made by Tri Phan'''") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | ==Derivative of the Natural Logarithmic Function== | ||
+ | Let <math>u</math> be a differentiable function of <math>x</math>. | ||
+ | 1.<math>\frac{d}{dx}[\ln x]=\frac{1}{x}</math> for <math>x>0</math> | ||
+ | |||
+ | 2.<math>\frac{d}{dx}[\ln u]=\frac{1}{u}\frac{du}{dx}</math> for <math>u>0</math> | ||
+ | |||
+ | '''Exercises''' Find the derivative of the function | ||
+ | |||
+ | '''a)''' <math>f(x)=\ln(7x)</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math>f'(x)=\frac{1}{7x} (7x)'=\frac{1}{7x}7=\frac{1}{x}</math> | ||
+ | |} | ||
+ | |||
+ | '''b)''' <math>f(x)=\ln (x^8)</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |Solution 1: <math>f'(x)=\frac{1}{x^8}(x^8)'=\frac{8x^7}{x^8}=\frac{8}{x}</math> | ||
+ | |- | ||
+ | |Solution 2: <math>f(x)=\ln (x^8)=8\ln x</math>, so <math>f'(x)=8\frac{1}{x}=\frac{8}{x}</math> | ||
+ | |} | ||
+ | |||
+ | '''c)''' <math>f(x)=\ln (4-x^2)</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math>f'(x)=\frac{1}{4-x^2}(4-x^2)'=\frac{1}{4-x^2}(-2x)=\frac{-2x}{4-x^2}</math> | ||
+ | |} | ||
+ | |||
+ | |||
[[Math_22| '''Return to Topics Page''']] | [[Math_22| '''Return to Topics Page''']] | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' |
Latest revision as of 09:07, 11 August 2020
Derivative of the Natural Logarithmic Function
Let be a differentiable function of . 1. for 2. for
Exercises Find the derivative of the function
a)
Solution: |
---|
b)
Solution: |
---|
Solution 1: |
Solution 2: , so |
c)
Solution: |
---|
This page were made by Tri Phan