Difference between revisions of "009A Sample Final 2, Problem 3"
Jump to navigation
Jump to search
(Created page with "<span class="exam">Compute <math>\frac{dy}{dx}.</math> <span class="exam">(a) <math style="vertical-align: -15px">y=\bigg(\frac{x^2+3}{x^2-1}\bigg)^3</math> <sp...") |
|||
Line 88: | Line 88: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math style="vertical-align: -5px"> | + | |Let <math style="vertical-align: -5px">y=\sin^{-1}(x).</math> Then, |
|- | |- | ||
− | | | + | | <math>\sin(y)=x</math> |
|- | |- | ||
− | | | + | |for <math>y</math> in the interval <math>\bigg[-\frac{\pi}{2},\frac{\pi}{2}\bigg].</math> |
|- | |- | ||
− | | | + | |Using implicit differentiation, we have |
|- | |- | ||
− | | <math>\ | + | | <math>\cos(y) \frac{dy}{dx}=1.</math> |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |Solving for <math style="vertical-align: -15px">\frac{dy}{dx},</math> we get |
|- | |- | ||
− | + | | <math>\frac{dy}{dx}=\frac{1}{\cos(y)}.</math> | |
− | |||
− | |||
− | |||
− | | <math> | ||
|} | |} | ||
Line 114: | Line 106: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, since | + | |Now, since <math>\sin(y)=x,</math> we have the following diagram. |
|- | |- | ||
− | | | + | |(Insert diagram) |
|- | |- | ||
− | | | + | |Therefore, |
+ | |- | ||
+ | | <math>\cos(y)=\sqrt{1-x^2}.</math> | ||
+ | |- | ||
+ | |Hence, | ||
|- | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
− | \displaystyle{\ | + | \displaystyle{\frac{dy}{dx}} & = & \displaystyle{\frac{1}{\cos(y)}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\sqrt{1-x^2}.} | + | & = & \displaystyle{\frac{1}{\sqrt{1-x^2}}.} |
\end{array}</math> | \end{array}</math> | ||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
Latest revision as of 17:11, 20 May 2017
Compute
(a)
(b)
(c)
Foundations: |
---|
1. Product Rule |
2. Quotient Rule |
3. Chain Rule |
Solution:
(a)
Step 1: | |
---|---|
Using the Chain Rule, we have | |
Step 2: |
---|
Now, using the Quotient Rule, we have |
(b)
Step 1: |
---|
Using the Product Rule, we have |
Step 2: |
---|
Now, using the Chain Rule, we get |
(c)
Step 1: |
---|
Let Then, |
for in the interval |
Using implicit differentiation, we have |
Solving for we get |
Step 2: |
---|
Now, since we have the following diagram. |
(Insert diagram) |
Therefore, |
Hence, |
Final Answer: |
---|
(a) |
(b) |
(c) |