Difference between revisions of "009C Sample Midterm 2, Problem 4"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Find the radius of convergence and interval of convergence of the series. <span class="exam">(a)  <math>\sum_{n=1}^\infty n^nx^n</math> <span class=...")
 
(Replaced content with "<span class="exam"> Find the radius of convergence and interval of convergence of the series. <span class="exam">(a)  <math>\sum_{n=1}^\infty n^nx^n</math> <span cl...")
 
(One intermediate revision by the same user not shown)
Line 4: Line 4:
  
 
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^\infty \frac{(x+1)^n}{\sqrt{n}}</math>
 
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^\infty \frac{(x+1)^n}{\sqrt{n}}</math>
 +
<hr>
 +
[[009C Sample Midterm 2, Problem 4 Solution|'''<u>Solution</u>''']]
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009C Sample Midterm 2, Problem 4 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Foundations: &nbsp;
 
|-
 
|'''1.''' '''Root Test'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; be a positive sequence and let &nbsp;<math style="vertical-align: -12px">\lim_{n\rightarrow \infty} |a_n|^{\frac{1}{n}}=L.</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L<1,</math>&nbsp; the series is absolutely convergent.
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.
 
|-
 
|'''2.''' '''Ratio Test'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L<1,</math>&nbsp; the series is absolutely convergent.
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.
 
|}
 
  
  
'''Solution:'''
 
 
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We begin by applying the Root Test.
 
|-
 
|We have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty} \sqrt[n]{|a_n|}} & = & \displaystyle{\lim_{n\rightarrow \infty} \sqrt[n]{|n^nx^n|}}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} |n^nx^n|^{\frac{1}{n}}}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} |nx|}\\
 
&&\\
 
& = & \displaystyle{n|x|}\\
 
&&\\
 
& = & \displaystyle{|x|\lim_{n\rightarrow \infty} n}\\
 
&&\\
 
& = & \displaystyle{\infty.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|This means that as long as &nbsp;<math style="vertical-align: -6px">x\ne 0,</math>&nbsp; this series diverges.
 
|-
 
|Hence, the radius of convergence is &nbsp;<math style="vertical-align: -1px">R=0</math>&nbsp; and
 
|-
 
|the interval of convergence is &nbsp;<math style="vertical-align: -5px">\{0\}.</math>
 
|-
 
|
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We first use the Ratio Test to determine the radius of convergence.
 
|-
 
|We have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{(x+1)^{n+1}}{\sqrt{n+1}}\frac{\sqrt{n}}{(x+1)^n}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| (x+1)\frac{\sqrt{n}}{\sqrt{n+1}}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} |x+1|\frac{\sqrt{n}}{\sqrt{n+1}}}\\
 
&&\\
 
& = & \displaystyle{|x+1|\lim_{n\rightarrow \infty} \sqrt{\frac{n}{n+1}}}\\
 
&&\\
 
& = & \displaystyle{|x+1|\sqrt{\lim_{n\rightarrow \infty} \frac{n}{n+1}}}\\
 
&&\\
 
& = & \displaystyle{|x+1|\sqrt{1}}\\
 
&&\\
 
&=& \displaystyle{|x+1|.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|The Ratio Test tells us this series is absolutely convergent if &nbsp;<math style="vertical-align: -4px">|x+1|<1.</math>
 
|-
 
|Hence, the Radius of Convergence of this series is &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we need to determine the interval of convergence.
 
|-
 
|First, note that &nbsp;<math style="vertical-align: -4px">|x+1|<1</math>&nbsp; corresponds to the interval &nbsp;<math style="vertical-align: -4px">(-2,0).</math>
 
|-
 
|To obtain the interval of convergence, we need to test the endpoints of this interval
 
|-
 
|for convergence since the Ratio Test is inconclusive when &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|First, let &nbsp;<math style="vertical-align: -1px">x=0.</math>
 
|-
 
|Then, the series becomes &nbsp;<math>\sum_{n=1}^\infty \frac{1}{\sqrt{n}}.</math>
 
|-
 
|We note that this is a &nbsp;<math style="vertical-align: -3px">p</math>-series with &nbsp;<math style="vertical-align: -12px">p=\frac{1}{2}.</math>
 
|-
 
|Since &nbsp;<math>p<1,</math>&nbsp; the series diverges.
 
|-
 
|Hence, we do not include &nbsp;<math style="vertical-align: -1px">x=0</math>&nbsp; in the interval.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 5: &nbsp;
 
|-
 
|Now, let &nbsp;<math style="vertical-align: -1px">x=-2.</math>
 
|-
 
|Then, the series becomes &nbsp;<math>\sum_{n=1}^\infty (-1)^n \frac{1}{\sqrt{n}}.</math>
 
|-
 
|This series is alternating.
 
|-
 
|Let &nbsp;<math style="vertical-align: -20px">b_n=\frac{1}{\sqrt{n}}.</math>
 
|-
 
|First, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{\sqrt{n}}\ge 0</math>
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|The sequence &nbsp;<math>\{b_n\}</math>&nbsp; is decreasing since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math>
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|Also,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} b_n=\lim_{n\rightarrow \infty} \frac{1}{\sqrt{n}}=0.</math>
 
|-
 
|Therefore, the series converges by the Alternating Series Test.
 
|-
 
|Hence, we include &nbsp;<math style="vertical-align: -1px">x=-2</math>&nbsp; in our interval of convergence.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 6: &nbsp;
 
|-
 
|The interval of convergence is &nbsp;<math style="vertical-align: -4px">[-2,0).</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The radius of convergence is &nbsp;<math style="vertical-align: -1px">R=0</math>&nbsp; and the interval of convergence is &nbsp;<math>\{0\}.</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; The radius of convergence is &nbsp;<math style="vertical-align: -1px">R=1</math>&nbsp; and the interval of convergence is &nbsp;<math style="vertical-align: -4px">[-2,0).</math>
 
|}
 
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 11:41, 12 November 2017

Find the radius of convergence and interval of convergence of the series.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam