Difference between revisions of "009A Sample Midterm 3, Problem 6"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Find the derivatives of the following functions. Do not simplify. <span class="exam">(a)  <math style="vertical-align: -16px">f(x)=\sin\bigg(\frac{x^...")
 
 
Line 104: Line 104:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg)</math>  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>f'(x)=\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg)</math>  
 
|-
 
|-
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg)</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>g'(x)=\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg)</math>
 
|-
 
|-
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>8(x+\cos^2(x))^7(1-2\cos(x)\sin(x))</math>
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>h'(x)=8(x+\cos^2(x))^7(1-2\cos(x)\sin(x))</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:49, 13 April 2017

Find the derivatives of the following functions. Do not simplify.

(a) 

(b) 

(c) 

Foundations:  
1. Chain Rule
       
2. Quotient Rule
       


Solution:

(a)

Step 1:  
First, using the Chain Rule, we have
       
Step 2:  
Now, using the Quotient Rule and Chain Rule, we have

       

(b)

Step 1:  
First, using the Chain Rule, we have
       
Step 2:  
Now, using the Quotient Rule, we have

       

(c)

Step 1:  
First, using the Chain Rule, we have
       
Step 2:  
Now, using the Chain Rule again we get

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam