Difference between revisions of "009A Sample Midterm 3, Problem 6"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Find the derivatives of the following functions. Do not simplify. <span class="exam">(a) <math style="vertical-align: -16px">f(x)=\sin\bigg(\frac{x^...") |
|||
Line 104: | Line 104: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' <math>\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg)</math> | + | | '''(a)''' <math>f'(x)=\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg)</math> |
|- | |- | ||
− | | '''(b)''' <math>\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg)</math> | + | | '''(b)''' <math>g'(x)=\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg)</math> |
|- | |- | ||
− | | '''(c)''' <math>8(x+\cos^2(x))^7(1-2\cos(x)\sin(x))</math> | + | | '''(c)''' <math>h'(x)=8(x+\cos^2(x))^7(1-2\cos(x)\sin(x))</math> |
|} | |} | ||
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 18:49, 13 April 2017
Find the derivatives of the following functions. Do not simplify.
(a)
(b)
(c)
Foundations: |
---|
1. Chain Rule |
2. Quotient Rule |
Solution:
(a)
Step 1: |
---|
First, using the Chain Rule, we have |
Step 2: |
---|
Now, using the Quotient Rule and Chain Rule, we have |
|
(b)
Step 1: |
---|
First, using the Chain Rule, we have |
Step 2: |
---|
Now, using the Quotient Rule, we have |
|
(c)
Step 1: |
---|
First, using the Chain Rule, we have |
Step 2: |
---|
Now, using the Chain Rule again we get |
|
Final Answer: |
---|
(a) |
(b) |
(c) |