Difference between revisions of "009A Sample Final A, Problem 8"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<br> <span style="font-size:135%"> <font face=Times Roman>8. (a) Find the linear approximation <math style="vertical-align: -14%;">L(x)</math> to the function <math style="ver...")
 
m
 
(5 intermediate revisions by the same user not shown)
Line 8: Line 8:
 
! Foundations: &nbsp;  
 
! Foundations: &nbsp;  
 
|-
 
|-
|Recall that the linear approximation ''L''(''x'') is the equation of the tangent line to a function at a given point. If we are given the point ''x''<span style="font-size:85%"><sub>0</sub></span>, then we will have the approximation <math style="vertical-align: -25%;">L(x) = f'(x_0)\cdot (x-x_0)+f(x_0)</math>.  Note that such an approximation is usually only good "fairly close" to your original point  ''x''<span style="font-size:85%"><sub>0</sub></span>.
+
|Recall that the linear approximation <math style="vertical-align: -22%;">L(x)</math> is the equation of the tangent line to a function at a given point. If we are given the point <math style="vertical-align: -12%;">x_0</math>, then we will have the approximation <math style="vertical-align: -20%;">L(x) = f'(x_0)\cdot (x-x_0)+f(x_0)</math>.  Note that such an approximation is usually only good "fairly close" to your original point  <math style="vertical-align: -12%;">x_0</math>.
 
|}
 
|}
'''Solution:'''
+
&nbsp;'''Solution:'''
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Part (a): &nbsp;
 
!Part (a): &nbsp;
 
|-
 
|-
|Note that ''f'' '(''x'') = sec ''x'' tan ''x''.  Since sin (&pi;/3) = &radic;<span style="text-decoration:overline">3</span>/2 and cos (&pi;/3) = 1/2, we have
+
|Note that <math style="vertical-align: -17%;">f'(x) = \sec x \tan x</math>.  Since <math style="vertical-align: -20%;">\sin(\pi/3)=\sqrt{3}/2</math> and <math style="vertical-align: -20%;">\cos(\pi/3)=1/2</math>, we have
 
|-
 
|-
|&nbsp;&nbsp;&nbsp;&nbsp; <math>f'(\pi /3) = 2\cdot\frac{\sqrt{3}/2}{1/2} = 2\sqrt{3}. </math>  
+
|&nbsp;&nbsp;&nbsp;&nbsp; <math>f'(\pi /3) \,\,=\,\, \sec (\pi/3) \tan (\pi/3) \,\,=\,\, \frac {1}{1/2}\cdot\frac{\sqrt{3}/2}{\,\,1/2} \,\,=\,\, 2\sqrt{3}. </math>  
 
|-
 
|-
|Similarly, ''f''(&pi;/3) = sec (&pi;/3) = 2. Together, this means that  
+
|Similarly, <math style="vertical-align: -22%;">f(\pi/3) = \sec(\pi/3) = 2.</math> Together, this means that  
 
|-
 
|-
 
|&nbsp;&nbsp;&nbsp;&nbsp; <math>L(x) =  f'(x_0)\cdot (x-x_0)+f(x_0) </math>
 
|&nbsp;&nbsp;&nbsp;&nbsp; <math>L(x) =  f'(x_0)\cdot (x-x_0)+f(x_0) </math>

Latest revision as of 08:27, 2 April 2015


8. (a) Find the linear approximation to the function at the point .
    (b) Use to estimate the value of .

Foundations:  
Recall that the linear approximation is the equation of the tangent line to a function at a given point. If we are given the point , then we will have the approximation . Note that such an approximation is usually only good "fairly close" to your original point .

 Solution:

Part (a):  
Note that . Since and , we have
    
Similarly, Together, this means that
    
                
Part (b):  
This is simply an exercise in plugging in values. We have

    
                        
                        
                        

Return to Sample Exam